As a result of the significant disruption that is being caused by the COVID-19 pandemic we are very aware that many researchers will has difficulty in meeting the timelines associated with our peer review process during normal times.  Please do let us know if you need additional time. Our systems will continue to remind you of the original timelines but we intend to be highly flexible at this time.

cadmium

  • Preconcentration and determination of heavy metals in water, sediment and biological samples

    Preconcentration and determination of heavy metals in water, sediment and biological samples

    A b s t r a c t

    In this study, a simple, sensitive and accurate column preconcentration method was developed for the determination of Cd, Cu and Pb ions in river water, urine and sediment samples by flame atomic absorption spectrometry. The procedure is based on the retention of the analytes on a mixed cellulose ester membrane (MCEM) column from buffered sample solutions and then their elution from the column with nitric acid. Several parameters, such as pH of the sample solution, volume of the sample and eluent and flow rates of the sample were evaluated. The effects of diverse ions on the preconcentration were also investigated. The recoveries were >95 %. The developed method was applied to the determination of trace metal ions in river water, urine and sediment samples, with satisfactory results. The 3δ detection limits for Cu, Pb and Cd were found to be 2, 3 and 0.2 μg dm-3, respectively. The presented procedure was successfully applied for determination of the copper, lead and cadmium contents in real samples, i.e., river water and biological samples.

     

     

     

     

    Authors

    Hamid Shirkhanloo, Ahmad Rouhollahi and Hassan Zavvar Mousavi

    CONCLUSIONS

     The developed procedure is very simple, sensitive and shows high tolerance to interference ions. Due to its good analytical characteristics, such as detection limit, enrichment factor and precision, the method is suitable for trace element analysis. In addition, no modification or functionalization of the employed adsorbent is required. The recoveries of the studied analytes were nearly quantitative. The accuracy of the results was verified by analyzing a certified reference material and spiked water samples. The recoveries for these elements were very satisfactory, which evidence for the reliability of the proposed method in the analysis of real samples.

    Download Paper

     lead; copper; cadmium; mixed cellulose ester membrane; preconcentration

  • Ultrasound-assisted dispersive solid phase extraction of cadmium(II) and lead(II) using a hybrid nanoadsorbent composed of graphene and the zeolite clinoptilolite

    Ultrasound-assisted dispersive solid phase extraction of cadmium(II) and lead(II) using a hybrid nanoadsorbent composed of graphene and the zeolite clinoptilolite

    A b s t r a c t

    We describe a hybrid nanoadsorbent prepared by depositing graphene on the zeolite clinoptilolite by chemical vapor deposition. The resulting sorbent is well suited for the preconcentration of lead(II) and cadmium(II) by ultrasound assisted dispersive micro solid phase extraction. An extraction unit has been designed and manufactured that facilitates handling of small sample volumes. The effects of sample pH amount of sorbent, concentration and volume of elution and time of ultrasonic bath were investigated. The nanoadsorbent was characterized by scanning electron microscopy, X-ray diffraction and energy dispersive X-ray microanalysis, all of which revealed the high surface area of the graphene sheets on the clinoptilolite. The extraction recoveries when using the new nanoadsorbent were 97 % (as opposed to a mere 10 % in case of clinoptilolite only). It is assumed that the graphene sheets located around the porous structure of clinoptilolite was acting as a barrier against macromolecules potentially existing in the sample matrices. The method was applied to the determination of lead and cadmium in water and human serum samples by electrothermal atomic absorption spectrometry.The detection limits were as low as 70 and 4 ng L−1 for Pb(II) and Cd(II), respectively. The accuracy of the method was underpinned by correct analysis of a standard reference material (SRM: 203105 Seronorm Trace Elements Serum L-2).

     

     

    Authors

    Mehri Ghazaghi & Hamid Shirkhanloo & Hassan Zavvar Mousavi & Ali Morad Rashidi

    ACKNOWLEDGEMENTS

    The authors express their appreciation to the Semnan University Research Council for financial support of this work.

    Download Paper

     

Contact us

Publisher:AMECJ publisher with the License number of 83095 From the Ministry of Guidance, Iran. To see the Certificate please click here.

Madadkaran Alley,Farjam St., Shahnazari Ave, Mirdamad, 

Tehran, Iran     P: 1545653718