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A B S T R A C T
The aim of this article was the fabrication of zeolite@Pd/Al2O3 
nanostructure through roll-coating technique for CO gas adsorption 
from air. Transmission electron microscopy (TEM), field-emission 
scanning electron microscopy (FESEM), X-ray diffraction (XRD), 
and energy-dispersive x-ray spectroscopy (EDX) were performed to 
investigate the morphological, structural, and elemental properties 
of zeolite@Pd/Al2O3 adsorbent. A continues carbon monoxide gas 
analyzer KIGAZ 210 was applied for analyzing of CO gas adsorption 
on as-present adsorbent in an experimental set-up. The adsorption 
capacity at equilibrium time for CO molecules was studied by 
zeolite@Pd/Al2O3 adsorbent. The Elovich, Avrami, and Fractional 
power kinetic models were used for this study. The equal value of 
experimental and theoretical adsorption capacity at equilibrium time 
as well as the unit value of regression coefficient was indicated that the 
Avrami kinetic model was the suitable model to describe CO removal 
from air through zeolite@Pd/Al2O3 nanostructure. The results showed 
us, the CO molecules were efficiently removed by catalytic zeolite 
adsorbent more than 95% from air at optimized conditions.
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1. Introduction
The clean and high quality air is essential for human 
health. The main contributors to climate change 
belong to emission of toxic gases CO, CO2, NOx, 
Sox [1, 2]. Operations of industries and factories, 
transportation, agricultural activities and post/
pre combustion of fuels are major reasons behind 
the emissions of CO and CO2 in environment air. 
Carbon Monoxide (CO) as a main ecological 
pollutant, can be formed by incomplete burning of 
industrial fuels, automobiles and caused to a serious 

of symptoms including dizziness, naupathia and 
dyspnea [3, 4]. The acceptable limit of CO exposure 
has reported by ACGIH chemical substances 
[5]. The development of efficient and robust 
techniques for air purification has been boosting 
attention over the past few decades [6]. Among 
these techniques, the process of adsorption shows 
a fundamental surface phenomenon in which the 
attachment of solute (adsorbate) into a solid surface 
(adsorbent) can remove pollutants selectively from 
air atmosphere [6, 7]. According to the previous 
studies, some of toxic gases such as CO, CO2, SO2, 
O3, VOCs, etc., have more concentration in air [3]. 
Nowadays, excellent properties of nanomaterials 
such as high surface area and high adsorption 
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caused to use for air purification [8-10]. According 
to the most valence of equilibrium cycle, the cycle 
of adsorption/desorption process can be identified 
approximately when the adsorbent is started that 
the model of isotherm as fluctuation of temperature 
and or pressure can be applied for appraising of the 
maximum capacity of equilibrium axle. Moreover, 
the regeneration procedure can be estimated 
through adsorbents’ recognizable characteristic 
like thermal behavior of electricity. Electric swing 
adsorption (ESA), moisture swing adsorption 
(MSA), temperature swing adsorption (TSA), and 
pressure swing adsorption (PSA), or techniques like 
temperature vacuum-pressure swing adsorption 
(TVPSA) that can be made by compilation of 
these above methods [11]. Pressure/Vacuum swing 
adsorption (PSA/VSA) and temperature swing 
adsorption (TSA) techniques was used for trapping 
of gas pollutions by above methods [12-15]. 
Carbon-based adsorbents such as activated carbons 
are commercially cheaper than other adsorbents, 
and also have known for toxic gas removal because 
of its useful properties such as eco-dependence, 
consistency of thermic and chemic, conductance 
of heat and electricity, or high resistance [16-19]. 
However, its disadvantages such as lack of low 
thermal and mechanical stability rather than other 
materials should not be ignored [6]. Recently, 
varieties of nonporous including metal-organic 
frameworks (MOFs) [20-23], mesoporous alumina 
(MA) [24, 25], and mesoporous silica (MS) [26,27] 
have been used for detection and adsorption of toxic 
gases, and are regarded as alternatives to commercial 
adsorbents [28,29]. Metal-organic frameworks 
(MOFs) are confirmed to be a significant adsorbent 
due to its unique properties such as large specific 
surface area, ultra-high porosities, controllable 
architectures, and low density [30, 31]. As an 
important factor, the porosity of MOFs can help to 
adsorb and desorbs micro molecules by providing a 
fast and handy path [32,33]. Although considerable 
fabricated and natural adsorbents such as activated 
carbon [26], fly ash [25], natural/modified clays 
[24], biomaterials [4], metal-organic-frameworks 
(MOFs) [23], zeolites [22,21], and nanomaterials 

[27] have been studied for a long period of time, 
there is still needs for advancements of adsorption 
technology and developing recyclable, cost-
effective, high efficient adsorbents that have 
high capacity. Mesoporous alumina and other 
alumina-based substances have high adsorption 
capacity because of their interconnected channels, 
uniformed porous structures, and united pore size 
[34,35].  In particular, γ-Phase nano-Al2O3 is the 
best candidate for gas molecules capturing rather 
than other alumina phases known as “transition 
alumina” owing to its pore-volume, large surface 
area, and great catalytic activity [36, 37, 38]. The 
properties with high surface area and acidic surface 
make the gamma-alumina (γ-Al2O3) a unique 
material with extensive application ranging from 
adsorbents to heterogeneous catalysis [39-42]. The 
phases including δ-, η-, θ-, and γ - Al2O3 indicates 
one of various metastable stages (polymorphs) of 
alumina [39, 43, 44].  A higher CO adsorption and 
great capacity of adsorbents can be occurred by 
covering of the small particle size of Pd clusters on 
the Al2O3 surface [45]. The application of palladium 
is restricted due to its high material cost, even 
though there has been extensive investigation of 
nanopalladium or its alloy groups [46]. Therefore, in 
this study, nano-scale palladium II nitrate has used 
due to its similar unique and useful characteristics 
with palladium nanoparticles, and because of 
being cost-effective and easy to access compared 
to palladium. The mesoporous silicates are one of 
the promising kinds of nanoscale materials that 
become well-known for researchers due to their 
potential abilities and utilizations [47-53].  Several 
researchers have been reported the advantages of 
applying nanoscale zeolite (NPs) over micro-scale 
zeolite (MPs). [54-58] For example, according to 
results of comparing nano-scale (30-40 nm) and 
micro-scale (2000 nm) of H-ZSM-5 for its catalytic 
performance, it has found that the catalyst lifetime 
for H-ZSM-5 in nano-scale particles is longer than 
itself in micro-scale particles [58]. Synthesizing 
and utilizing nanosized zeolite attract great interests 
compared to zeolite with micron size, recently 
[54-62]. The properties of high external surface 
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area and high availability of active sites have been 
made nanoscale zeolites better catalytic proficiency 
and age of catalyst. Either a particular type of 
nanoadsorbents like CNTs [63,64], or some kinds 
of pollutants including heavy metal, antibiotic and 
so on [65, 66], or organic and inorganic pollutants 
removal [67] have totally been focused by most 
of recent review articles even though over 500 
technical papers published between 2000 to 2019 
indicate the rapid growth of interest in this research 
area. Hence, the current study concentrates on the 
adsorption of carbon monoxide as a toxic gas by 
nanomaterial based composite films. The present 
study’s aim is firstly loading three nanoparticles 
γ-Al2O3, Pd(NO3)2 and zeolite on glass substrates 
through the roll-coating method, in order to 
enhance the span of reactions between CO gas 
molecules and adsorbents surface, and improve 
the ability of adsorbents for CO capturing. Then, 
the Elovich, the Avrami, and the Fractional power 
kinetic models for CO adsorption by zeolite@Pd/
Al2O3 nanoadsorbent were studied and analyzed.

2. Experimental 
2.1. Materials
Nanoshel chemicals was provided alumina 
nanoparticles (CASN: 1344-28-1, Molar mass:101.96 g 
mol-1 γ-Al2O3 with purity >99.9%) and zeolite 
nanoparticles (CASN:1318-02-01, Al2O34 SiO2 H2O 
with purity 99%). Merck chemicals and Sigma-Aldrich 
were two sources that 1-methyl-2-pyrrolidone and 
palladium nitrate (Pd(NO3)2) were bought from them, 
respectively. There were no needs for purification of 
received chemicals in order to use them.

2.2. Preparation of Adsorbent
The roll-coating technique has been used to deposit 
zeolite@Pd/Al2O3 as composite films on glass 
substrates. Four glass substrates (2 cm × 8 cm) 
were used in this study. Disinfectant materials 
such as acetone, ethanol and deionized water 
were consumed for washing glass substrates three 
times in an ultrasonic device. Then, the washed 
substrates dried at room temperature. As the 
process of samples preparation, firstly 1 g of Al2O3, 

1 g of zeolite and  1 g of Pd(NO3)2 were mixed 
in a container, then 1-methyl-2-pyrrolidone was 
added dropwise into it as 10 mL in order to make 
the adhesion of materials on the substrates easy and 
stronger. After 1 day, the prepared coated substrates 
were desiccated at room temperature. Finally, a 
hollow cubic container was fabricated through 
attaching these four Al2O3/Pd(NO3)2/Zeolite coated 
substrates to each other whereby this tunnel-like 
shape helps CO gas molecules to be channeled and 
trapped readily [68]. In this case, the adsorption 
capacity and efficiency will be greatly affected 
by enhancing the rate of interaction between gas 
molecules and adsorbents.

2.3. Characterization 
Transmission Electron Microscopy (TEM) was 
used in order to determine the shape and grain 
distribution of nanoparticles with high resolution. 
X-ray diffraction (XRD, STOE STADI MP) was 
applied for extracting the crystalline structure of 
pure initial materials. Topography and morphology 
of as-present adsorbent (before and after adsorption 
process) were determined through field emission 
scanning electron microscope (FESEM, MIRA3 
TESCAN), while energy-dispersive X-ray 
spectroscopy (EDX) analysis was used in order to 
specify and measure chemical elemental contents 
of the sample. 
 
2.4. Adsorption of CO
The schematic of designed experimental setup 
for testing CO adsorption consists of main three 
sections as a CO gas capsule, a compartment (20 
cm length and 7 cm internal diameter) where an 
adsorbent is placed, and a carbon monoxide gas 
analyzer KIGAZ 210 (Sauermann Co, CO sensor 
protection by solenoid valve) based on tunable diode 
laser (TDL, LOD=1 ppm) for CO Measurement 
for detection of 1-120 ppm CO and evaluation of 
target gas (CO 99,999%) concentration [68]. The 
temperature of 0-250 °C (23-482 °F); optional 
(for probe installation) 0-600 °C (0-1112 °F) with 
additional thermal barrier was used. The constant 
pressure 1.5 bar was applied in this study. The 
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concentration of inlet CO gas and the saturation 
level of CO gas concentration were 150 mg L-1 and 
5 mg L-1, respectively.

2.5. Adsorption mechanism  of CO by Zeolite@
Pd/Al2O3

Generally, movable and fixed bed are two types 
as classification of the adsorption/desorption by 
Al2O3/Pd(NO3)2/Zeolite. The molecules of gases 
like CO can attach to the adsorbent surface of 
Al2O3/Pd(NO3)2/Zeolite when the molecules of 
these gases achieve decreased free energy while the 
molecules come towards the surface of adsorbent. 
The value of CO molecules that come close to 
the surface of Al2O3/Pd(NO3)2/Zeolite adsorbent 
will be increased by decreasing of entropy that 
occurs by interplay between solid surface and CO 
molecules. The adsorption process based on van der 
Waals forces called physically adsorption, while 
chemical bond formation obtained between surface 
of Al2O3/Pd(NO3)2/Zeolite adsorbent and adsorbate. 
So, there are different mechanisms of physio-
chemisorption for adsorption procedure which 
must be optimized. The MOFs’ surface has several 
functional groups caused to act chemical reaction 
in mechanism adsorption [16]. In Order to achieve 
efficient elimination of CO, the adsorbent substance 
should possess some essential properties which are 
demonstrated as follow: 1) Since the proficiency of 
adsorption can specify how many adsorbents are 
required whereby the adsorption column’s volume 
can be measured, it possesses high importance 
for determining the main cost of the adsorption 
mechanism. However, the value of adsorbent and 
size of equipment for adsorption process must 
be minimized due to high CO concentration. 2) 
The ratio of CO to another gas capacity shows 
the selectivity CO gas.  3) Another parameter for 
grading the adsorbents’ efficiency is the kinetics of 
adsorption/desorption that the fast rate of adsorption/
desorption kinetics for CO will be required by the 
adsorbents. The cycle of time will be controlled 
by processes of regeneration and the adsorption’s 
kinetics that can form two types of curves that are 
a sharp breakthrough curve for CO which indicates 

a fast kinetics, and a budged breakthrough curve 
occurs if there is slow kinetics for CO. The transfer 
of mass through the surface of adsorbent, the 
functional group on the surface of adsorbent, and 
carbon monoxide’s reaction kinetics can together 
influence on the kinetics of CO adsorption on the 
porous substances. 4) In order to keep high kinetics, 
it is necessary to have a property of the mechanical 
stability for adsorbent. 5) The demanded energy 
for regeneration of adsorbents should be measured. 
The range of -25 to -50 kJ mol-1 is allocated to heat 
of physisorption and chemisorption cases possess 
the heat of -60 to -90 kJ mol-1 [17]. Regarding the 
chemical adsorbents, physical adsorbents such as 
carbonaceous and non-carbonaceous substances 
need low energy desire for CO removal due to the 
no generation of new bonds between these gases and 
the adsorbents’ surface whereby the regeneration of 
these gases requires less energy (Fig.1). 

Fig.1. The adsorption mechanism of CO by zeolite@
Pd/Al2O3 adsorbent

3. Results and discussion
3.1.  TEM analysis
Figure 2a demonstrates the results of TEM 
analysis of pure Al2O3 nanoparticles (γ-Al2O3) 
that three dimensional porous structure are made 
up by interconnected rod-like particles [69]. It is 
obviously shown that the shape of nanoparticles 
does not look accurately spherical [70]. The TEM 
for nanoparticles of  zeolite  and zeolite@Pd/Al2O3 
was shown in Figure 2b and 2C, respectively.

CO adsorption by Al2O3/Pd(NO3)2/Zeolite composite            Nastaran Mozaffari et al
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Fig. 2. The TEM for different nanoparticles a) γ-Al2O3 

b) Zeolite c) Zeolite@Pd/Al2O3

3.2. XRD  spectra
Figure 3 shows the XRD patterns of pure initial 
materials which are Al2O3, Pd(NO3)2 and zeolite. 
An X-ray diffractometer with Cu Kα source (λ = 
1.5405 Å) and a scan step size of 0.01° was used 
for recording XRD patterns. The range of scanning 
(2θ) was recorded between 10° and 90°. As it is 
shown, the structure of pure zeolite nanoparticles 
is more crystalline than pure Al2O3 and Pd(NO3)2 
nanoparticles that confirm an appropriate property 
of zeolite to have a high adsorption capacity due 
to its porosity. The diffraction peaks of the pure 
Al2O3 appeared at 2θ of 31.93°, 39.49°, 45.49° and 
66.76° which are well distributed to the crystalline 
preferred orientation of 220, 222, 400 and 440, 
respectively. The peak positions of Pd(NO3)2 
were considered as 24.079 and 68.08, which are 
corresponding to 011 and 220, respectively. The 
diffraction peaks 10.34, 16.56, 21.79, 29.39 and 
31.58, corresponding to the reflection from 220, 
212, 203, 451 and 002 are observed in zeolite 
nanoparticles. The characteristic peaks of pure 
zeolite are well matched and consistent with the 
corresponding peaks of all samples, and there are 
no other observed phases. [71] According to XRD 
patterns of pure zeolite, there is no considerable 
alteration in the framework and no lost in solid 
pure zeolite’s crystallinity as well as the host frame 
stays intact at the end of the mechanism. [72] 
Al2O3 nanoparticles (Ref 00-029-0063), Pd(NO3)2 
(Ref 00-005-0681 and 01-087-0643) and zeolite 
(Ref 01-080-0922) are in good agreement with the 
candidate references (Table 1). Regarding the fact 
that available commercial nanomaterials of γ-Al2O3 
produced through boehmite thermal dehydration, 
thus determining the crystal structure of γ-Al2O3 is 
difficult as well as it indicates poor crystallinity and 
impurities. Also, this fact can include other alumina 
polymorphs that have similar crystal formations. 
The appropriate structure for analysis belongs to 
large, clean γ-Al2O3 single-crystals that typically 
cannot produced commercially. Oxidizing single-
crystal NiAl (110) under appropriate-controlled 
conditions would make single-crystal γ-Al2O3 
films with more than 80 nm thick able to be grown 

Anal. Method Environ. Chem. J. 3 (2) (2020) 92-107
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which is demonstrated by Zhang et al which were 
worked on Al2O3 with γ-shape structure on Ni-
Al. Since γ-Al2O3 fabricated by this technique is 
well crystalline and does not possess hydrogen or 
water in bulk structure, it is suitable for considered 
structural analysis, unlike the material boehmite-
originated γ-Al2O3 [73].

3.3. FESEM  spectra
The surface morphology, microstructure, particle 
size and distribution of the as-prepared product 
are determined by field emission scanning electron 
microscope (FESEM). Figure 4 indicates the 
FESEM images of the Al2O3/Pd(NO3)2/Zeolite 
sample at a 1 µm scale of magnification before 

Table 1. The obtained crystalline regions and peaks of the zeolite@Pd/Al2O3 composite film
(Al2O3/Pd(NO3)2/zeolite) through XRD patterns[73]

Al2O3

hkl 220 222 400 440
2θ

(Degree) 31.93° 39.49° 45.49° 66.76°

Pd(NO3)2
2 (Degree)

        hkl           011                      -----                                   -----                        220
          2θ
     (Degree) 24.079°                ----- ----- 68.08°

Zeolite
2 (Degree)

hkl 220 212 203 451 002
            2θ

(Degree) 10.34° 16.56° 21.79° 29.39° 31.58°

Fig. 3. The results of XRD analysis for pure initial materials including a) Al2O3/Pd(NO3)2/zeolite b) 
zeolite, c) Pd(NO3)2 and d) Al2O3 nanoparticles

CO adsorption by Al2O3/Pd(NO3)2/Zeolite composite            Nastaran Mozaffari et al
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and after CO gas adsorption. The FESEM results 
revealed that the united porous structures along 
with regular interlinked channels are developed 
throughout the adsorbents after adsorption. Also, 
homogenous dispersion and well particle size 
repartition of adsorbent after the adsorption process 
make it incomparable than its virgin version. Hence, 
a high surface area and whereby a very high CO 
adsorption is noticed because of these properties.
 
3.4. Energy-dispersive X-ray spectroscopy  
The percentage of elemental content was determined 
by energy-dispersive X-ray spectroscopy (EDX). 
Figure 5 illustrates the existence of Al, O, Si, Pd, 
and N in the sample before the adsorption process 
that was utilized to fabricate as-present adsorbent. 
Since Al2O3 and zeolite (aluminum silicates) 
nanoparticles were used in this study, a notable 
increase in the spectral position of Al EDX peak 
is observed. The weight and atomic percentages 

of ingredients are extracted from EDX patterns of 
virgin adsorbent that include Al, O, Pd, N, and Si 
at wt.% for each element. (Table 2) The peak of Ca 
corresponds to glass substrates.

3.5.  Kinetic models analysis
The inlet CO gas concentration into an experimental 
set-up considered as 150 mg L-1. The evaluation 
of various concentrations of adsorbed CO versus 
time for Al2O3/Pd(NO3)2/Zeolite adsorbent’s results 
indicates the increase of adsorbed CO concentration 
(mg L-1) with passing time until reaching saturation 
levels [68]. The relation between adsorbed CO gas 
concentration and contact time was illustrated in 
Figure 6. This diagram indicated the effect of passing 
time on the speed of CO adsorption that becomes 
slower while time is reaching saturation level. As 
it is obvious, the adsorbed CO gas concentration is 
decreased as range of 150-70, 69-11 and 10-5 mg L-1 
at rate of 1 s, 2 s and 3 s, respectively.

Fig. 4. Obtained images from FESEM of Al2O3/Pd(NO3)2/zeolite adsorbent
a) Before b) after CO gas adsorption at 1 µm scales of magnification.

Table 2. Statistical analysis EDX results of Al2O3/Pd(NO3)2/zeolite with its atomic and weight values.

Elements Al Ka O Ka Pd Ka N Ka Si Ka Ca Ka

wt.% 8.21 26.46 45.01 0.53 1.62 0.48
at% 7.78 42.33 10.83 0.59 1.47 0.31

Anal. Method Environ. Chem. J. 3 (2) (2020) 92-107
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To explore the chemisorption kinetic of gases 
onto a solid surface, Elovich kinetic model is 
describe [74, 75]. The Elovich kinetic introduced 
in Equation 1 [76].

             (Eq. 1)

Where qt is adsorption capacity at time t (mg  
g-1), the Elovich coefficient α in the primary rate 
of adsorption (mg g-1 min-1), and the Elovich 
coefficient β is desorption rate constant (g mg-1) 
that is associated to the extent of energy activation 
as well as surface covering for chemisorption 
process.

Fig. 5. EDX patterns of the made Al2O3/Pd(NO3)2/zeolite adsorbent

Fig. 6. The diagram of relation between adsorbed CO gas concentration 
and contact time (mg L-1, sec)

CO adsorption by Al2O3/Pd(NO3)2/Zeolite composite            Nastaran Mozaffari et al
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The amount of α and β are obtained from intercept 
(β-1 Ln(αβ)) and slope (β-1) of qt vs. Ln t linear 
plot (Fig. 7). It should be noted that the number 
of remained sites after adsorption process can be 
specified by the value of β-1, and adsorption quantity 
in Ln t = 0. It can be shown by β-1 Ln(αβ) value 
that the closeness of this value with experimental 
value indicates the best fitting of kinetic data to 
the Elovich model [77], however, in this research 
work, the values have significant difference. 

The obtained parameters were listed in Table 3. 
Regarding Mozaffari et al. 2020 [68], the amount 
of experimental equilibrium adsorption capacity at 
216 s is 111.16 mg. g-1 that is not in agreement with 
the theoretical adsorption capacity at equilibrium 
time calculated through this model. The low 
regression coefficient (R2) value and unequal value 
of qe.exp as well as qe.cal demonstrate the scantiness 
Elovich model of for description of CO removal by 
Al2O3/Pd(NO3)2/Zeolite nano-adsorbent.

Fig. 7. The Elovich kinetic model for carbon monoxide adsorption by Al2O3/
Pd(NO3)2/Zeolite nano-adsorbent

Table 3. The calculated parameters of the Elovich, Avrami, and Fractional power kinetic models

qe,exp (mg.g-1) 111.16 [99]

Elovich Model Avrami Model Fractional Power Model
qe, cal                          91.94
α                                 3.5

β                                0.036
β-1                           28.096
β-1 [Ln(αβ)]              58.29
R2                               0.85

                     

qe, cal                   111.16
kAV                       4.54
nAV                       1.12
R2                         0.99

qe, cal                                  129.93
k                             1.048
v                             0.896
R2                            0.98

Anal. Method Environ. Chem. J. 3 (2) (2020) 92-107
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For simulation of phase transition as well as the 
growth of crystallite in adsorbent, Avrami kinetic 
model is investigated [78]. The Avrami kinetic is 
expressed in equation 2 [79]:

                                  (Eq. 2)

Where KAV is the Avrami kinetic constant, the nAV is 
the Avrami exponent to hypothesize the mechanism 
of alteration during the process of adsorption 
[109]. The amount of KAV and nAV are acquired 
from intercept and slope of   vs. Ln  
linear plot. 
Figure 8 demonstrates the plot of  
versus. The regression coefficient (R2) is close to 
unity that shows the best fit of data. The value of 
theoretical adsorption capacity at  (equilibrium 
time) was obtained as 111.16 mg g-1 that is match 
with the experimental equilibrium adsorption 

capacity which was reported by Mozaffari et al 2020 
[68]. Table 3 gives the calculated parameters of this 
model. Therefore, the unit value of R2 and identical 
value of  and  indicate the best applicability of 
Avrami kinetic model to describe carbon monoxide 
adsorption through Al2O3/Pd(NO3)2/Zeolite nano-
adsorbent.
The modified form of the Freundlich equation is 
Fractional power model [80]. Fractional power 
kinetic model is defined as equation 3 [110].

        (Eq. 3)

Where k and v are constants and v should be less 
than unity. The sorption rate at  is defined as kv [80]. 
The plot of  versus  is demonstrated in Figure 9. 
The amount of k and v are obtained from intercept 
(Ln k) and slope (v) of  vs.  linearplot.
The calculated constants are tabulated in Table 3. 
The value of v was obtained as 0.89 that is positive 
and less than unity and regression coefficient (R2) 

Fig. 8. The Avrami kinetic model for carbon monoxide adsorption by Al2O3/
Pd(NO3)2/Zeolite nano-adsorbent

CO adsorption by Al2O3/Pd(NO3)2/Zeolite composite            Nastaran Mozaffari et al



102

is almost close to unity. However, experimental 
adsorption capacity at equilibrium time that was 
obtained by [99] is not in a good agreement with 
calculated adsorption capacity. Thus, this model 
is not sufficient to describe carbon monoxide by 
Al2O3/Pd(NO3)2/Zeolite nano-adsorbent.

4. Conclusions
In this article, Al2O3/Pd(NO3)2/zeolite adsorbent 
was prepared by roll coating method to investigate 
its ability to remove CO gas. It was shown that 
the effect of passing time on the speed of CO 
adsorption that becomes slower while time is 
reaching saturation level. To study the kinetic 
models for CO removal through this adsorbent, 
the Elovich, Avrami, and Fractional power kinetic 
models were explored. The investigation of Avrami 
kinetic model illustrated that the experimental and 
theoretical adsorption capacity value at equilibrium 
time was identical. Furthermore, the regression 
coefficient value (R2) was close to unity. Therefore, 
the Avrami kinetic model was the best model to 

describe CO removal through Al2O3/Pd(NO3)2/
zeolite adsorbent. The porous structure of Al2O3/
Pd(NO3)2/zeolite adsorbent which was obtained 
from FESEM analysis is responsible for high values 
of adsorption efficiency and adsorption capacity. 
The result of XRD patterns of pure initial materials 
was applied to confirm their purity and crystalline 
structures. Elemental content of materials of 
adsorbent before adsorption was specified by EDX 
analysis to show the existence of Al, O, Pd, Si, 
N and Ca that the last one was referred to glass 
substrates.
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