A review: Water pollution by heavy metal and organic pollutants: Brief review of sources, effects and progress on remediation with aquatic plants

Vol 2, Issue 03, Pages 5-38,*** Field: Environment chemistry

  • Isiuku Beniah Obinna Department of Chemistry, Imo State University, Imo State, Nigeria
  • *Enyoh Christian Ebere, Corresponding Author Group Research in Analytical Chemistry, Environment and Climate change (GRACE&CC), Department of Chemistry, Faculty of Science, Imo State University, Owerri, Imo State
Keywords: Chemical pollutants, Chemometrics, Constructed wetlands, Hydroponics, Macrophytes, Models, Toxicity, Water pollution

Abstract

Heavy metals and organic pollutants are ubiquitous environmental pollutants affecting the quality of soil, water and air. Over the past 5 decades, many strategies have been developed for the remediation of polluted water. Strategies involving aquatic plant use are preferable to conventional methods. In this study, an attempt was made to provide a brief review on recent progresses in research and practical applications of phytoremediation for water resources with the following objectives: (1) to discuss the toxicity of toxic chemicals pollution in water to plant, animals and human health (2) to summarise the physicochemical factors affecting  removal of toxic chemicals such as heavy metals and organic contaminants in aqueous solutions by aquatic plants; (3) to summarise and compare the removal rates of heavy metals and organic contaminants in aqueous solutions by diverse aquatic plants; and (4) to summaries chemometric models for testing aquatic plant performance.

References

United States Geological Survey (USGS), Ground Water and Surface Water: A Single Resource, Circular, (1998) 1139.

T. Zhang, Q. Lu, C. Su C., Y. Yang, D. Hu, Q. Xu, Mercury induced oxidative stress, DNA damage, and activation of antioxidative system and Hsp70 induction in duckweed (Lemna minor), Ecotox. Environ. Safe., 143 (2017) 46-56.

C. Jiang, H. Chen, Y. Zhang, H. Feng, M.A. Shehzad, Y. Wang, T. Xu, Complexation electrodialysis as a general method to simultaneously treat wastewaters with metal and organic matter, Chem. Eng. J., 348 (2018) 952–959.

M.N.V Prasad, Aquatic Plants for Phytotechnology, (2006) 259-274.

C.F. Carolin, P.S. Kumar, A. Saravanan, G.J. Joshiba, Mu Naushad, Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review, J. Environ. Chem. Eng., 5 (2017) 2782–2799.

C.E. Enyoh, A.W. Verla, N.J. Egejuru, pH variations and chemometric assessment of borehole water in Orji, Owerri Imo State, Nigeria, J. Environ. Anal. Chem., 5 (2018) 1-9.

CDC, Global WASH Fast Facts. Global Water, Sanitation, & Hygiene (WASH), (2016). https://www.cdc.gov/healthywater/global/wash_statistics.html Accessed 30/7/2019.

World Health Organization and UNICEF, Meeting the MDG Drinking Water and Sanitation Target: The urban and rural challenge of the decade, 2006, 1-47. https://www.who.int/water_sanitation_health/monitoring/jmpfinal.pdf

Z. J. Xu, Y. Cao, Y. Zhang, Z. Yuan, Z. Lou, X. Xu, X. Wang, A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: preparation, application, and mechanism, Chemosphere, 195 (2018) 351–364.

L. K. Charity, V. A. Wirnkor, A.C. Emeka, A.A. Isioma, C.E. Ebere, Health risks of consuming untreated borehole water from uzoubi umuna orlu, Imo State Nigeria, J. Environ. Anal. Chem., 5 (2018) 250-264.

A. Bhatnagar, M. Sillanpaa, Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment, Chem. Eng. J., 157 (2010) 277–296.

E. Padilla-Ortega E., R. Leyva-Ramos, J.V. Flores-Cano, Binary adsorption of heavy metals from aqueous solution onto natural clays, Chem. Eng. J., 225 (2013) 535–546.

A.W. Verla, E. N. Verla, C.E. Amaobi, C.E. Enyoh, Water pollution scenario at river uramurukwa flowing through owerri metropolis, Imo State, Nigeria, Inter. J. Appl. Sci. Res., 3 (2018) 40-46.

K. H. Vardhan, S. K. Ponnusamy, C.P. Rames, A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives, J. Mole. Liq., 290 (2019) 111-197.

L. West, World Water Day: A Billion people worldwide lack safe drinking water, 2018. http://environment.about.com/od/environmentalevents/a/waterdayqa.htm

D.H. Pink, Investing in Tomorrow's Liquid Gold., 2019. https://web.archive.org/web/20060423172532/https://finance.yahoo.com/columnist/article/trenddesk/3748

K. Kelland, Study links pollution to millions of deaths worldwide, 2017. https://www.reuters.com/article/us-health-pollution/study-links-pollution-to-millions-of-deaths-worldwide-idUSKBN1CO39B .

L. Järup, Hazards of heavy metal contamination. Br. Med. Bull. 68 (2003) 167–182.

E.N. Verla, A.W. Verla, C.E. Enyoh, Pollution assessment models of soils in portharcourt city, rivers state, Nigeria. World News Nat. Sci., 12 (2017) 1-23.

A. W. Verla, C. E. Enyoh, E. N. Verla, Microplastics, an emerging concern: a review of analytical techniques for detecting and quantifying microplatics, Anal. Method. Environ. Chem. J., 2 (2019) 15-32. https://doi.org/10.24200/amecj

A.W. Verla, E.N. Verla, C.E. Enyoh, K. Leizou, N.O. Peter, Using physicochemical properties in assessment of river water for consumption and irrigation in Nigeria, Eurasian J. Anal. Chem., 5(2019) 14-23.

R. S. Boyd, Heavy metal pollutants and chemical ecology: exploring new frontiers, J. Chem. Ecol., 36 (2010) 46-58.

LH. Gade, Highly polar metal-metal bonds in “early-late” heterodimetallic complexes. Angew. Chem. Int. Ed., 39 (2000) 2658–2678.

K.V. Ragnarsdottir, D. Hawkins, Trace metals in soils and their relationship with scrapie occurrence, Geochim. Cosmochim. Acta, 69 (2005) 196–196.

M.I. Lone, Z. He, P.J. Stoffella, X. Yang, Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives, J. Zhej. Uni. Sci. B, 9 (2008) 210-220, 10.1631/jzus.B0710633.

J. Yabe, I. Mayuni, U. Takashi, Current levels of heavy metal pollution in Africa. J. Vet. Med. Sci., 72 (2010) 1257–1263.

J.D. Appleton, M.R. Cave, B. Palumbo-Roe, J. Wragg, Lead bioaccessibility in top soils from lead mineralization and urban domains, UK. Environ.Pollut., 178 (2013) 278-287.

J.B. Diatta, W. Grzebisz, Simulative evaluation of Pb, Cd, Cu, and Zn transfer to humans: The case of recreational parks in Poznan, Poland. Pol. J. Environ. Stud., 20 (2011) 1433-1440.

C. E. Enyoh, A.W. Verla, E.N. Verla, Uptake of microplastics by plant: a reason to worry or to be happy, World Sci. News, 131 (2019) 256-267.

EEA report, Heavy metal emissions, Eur. Environ. Agency, (2019).

M. van het Bolcher, H. Denier van der Gon, B.J. Groenenberg, I. Ilyin, G.J. Reinds, J. Slootweg, O. Travnikov, A. Visschedijk, W. de Vries, Heavy metal emissions, depositions, critical loads and exceedances in Europe-J.P. Hettelingh - J. Sliggers. VROM-DGM, Directie Klimaatverandering en Industrie, IPC 650, (2006) P.O. Box 20951, 2500 EZ Den Haag, Netherlands.

Wang F., Kuehr R., Ahlquist D., Li J. E-waste in China: A country report; United Nations University, (2019). https://collections.unu.edu/eserv/UNU:1624/ewaste-in-china.pdf.

W. Barabasz, D. Albinska, M. Jaskowska, J. Lipiec, Ecotoxicology of aluminium. Pol. J. Environ. Stud., 11 (2002) 199–203.

R. Grazuleviciene, R. Nadisauskiene, J. Buinauskiene, T. Grazulevicius, Effects of elevated levels of manganese and iron in drinking water on birth outcomes, Pol. J. Environ. Stud., 18 (2009) 819–825.

M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew, K.N. Beeregowda Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol., 7 (2014) 60–72.

S. Martin, W. Griswold, Human health effects of heavy metals, Environ. Sci. Tech. Briefs Citizens 15 (2009) 1–6.

C. B. de Souza, G.R. Silva, Phytoremediation of effluents contaminated with heavy metals by floating aquatic macrophytes species. Intertech Open book, (2019). http://dx.doi.org/10.5772/intechopen.83645

N. Sooksawat, M. Meetam, M. Kruatrachue, P. Pokethitiyook, K. Nathalang, Phytoremediation potential of charophytes: bioaccumulation and toxicity studies of cadmium, lead and zinc, J. Environ. Sci., 25(3) (2013) 596–604

F.E.C. Sneller, L.M. van Heerwaarden, H. Schat, Toxicity, metal uptake, and accumulation of phytochelatins in silene vulgaris exposed to mixtures of cadmium and arsenate, Environ. Toxicol. Chem., 19 (2000) 2982-2986.

G. Brunetto, Heavy metals in vineyards and orchard soils. Revista Brasileira de Fruticultura, Jaboticabal. 39 (2017) e-263.

F.V. de Campos, J. A. de Oliveira, A.A. da Silva, C. Ribeiro, F. F. dos Santos, Phytoremediation of arsenite-contaminated environments: is Pistia stratiotes L. a useful tool, Ecological Indicators 104 (2019) 794–801

S. Jasrotia, K. Arun, M. Aradhana, Performance of aquatic plant species for phytoremediation of arsenic-contaminated water, Appl. Water Sci. 7 (2017) 889–896.

S.H. Hasan, M. Talat, S. Rai, Sorption of cadmium and zinc from aqueous solutions by water hyacinth (Eichchornia crassipes), Bioresour. Technol. 98 (2007) 918–928

L.Q. Ma, K.M. Komar, C. Tu, W. Zhang, Y. Cai, E.D. Kennely, A fern that hyperaccumulates arsenic, Nature, 409 (2001) 579.

W. Samuel, B. Richard, E. Helen, L. Darkwah, Assessment of typha capensis for the remediation of soil contaminated with As, Hg, Cd and Pb, Environ. Monit. Assess., 191 (2019) 346. https://doi.org/10.1007/s10661-019-7484-2

S. Radic, M. Babic, D. Sˇkobic, V. Roje, B. Pevalek-Kozlina, Ecotoxicological effects of aluminium and zinc on growth and antioxidants in Lemna minor L, Ecotoxicol. Environ. Safe. 73 (2010) 336-342.

J. Razinger, M. Dermastia, J.D. Koce, A. Zrimec, Oxidative stress in duckweed (Lemna minor L.) caused by short-term cadmium exposure, Environ. Pollut. ,153 (2008) 687-694.

H. Li, F. Cheng, A. Wang, T. Wu, Cadmium removal from water by hydrophytes and its toxic effects, Proceeding of the international symposium of phytoremediation and ecosystem health, Hangzhou, China, (2005).

T. Sricoth, W. Meeinkuirt, P. Saengwilai, J. Pichtel, P. Taeprayoon, Aquatic plants for phytostabilization of cadmium and zinc in hydroponic experiments, Environ. Sci. Pollut. Res. 25 (2018) 14964-14976. https://doi.org/10.1007/s11356-018-1714-y

C. Jung-Chun, W. Kai-Sung, H. Chen, C. Lu, L. Huang, H. Li, T. Peng, S. Chang, Phytoremediation of Cr(III) by Ipomonea aquatica (water spinach) from water in the presence of EDTA and chloride: Effects of Cr speciation, Bioresour. Technol., 101 (2010) 3033–3039.

M. Marcia, A. Christiane, R. Chafim, S. Jonatas, Technical challenges and social, economic and regulatory barriers to phytoremediation of contaminated soils, Rev. Bras. Ciênc. Solo., 35 (2011) 1-11. http://dx.doi.org/10.1590/S0100-06832011000100001

G.A Leao, J.A. de Oliveira, R.T.A. Felipe, F.S. Farnese, G.S. Gusman, Anthocyanins, thiols, and antioxidant scavenging enzymes are involved in Lemna gibba tolerance to arsenic, J. Plant Interact., 9 (2014) 143-151.

K. Jayakumar, M. Rajesh, L. Baskaran, P. Vijayarengan, Changes in nutritional metabolism of tomato (Lycopersicon esculantum Mill.) plants exposed to increasing concentration of cobalt chloride, Int. J. Food Nut. Safe., 4 (2013) 62–69.

K. Jayakumar, C. A. Jaleel, M. M. Azooz, Phytochemical changes in green gram (Vigna radiata) under cobalt stress, Global J. Mol. Sci., 3 (2008) 46–49.

K. Jayakuma, C. A. Jaleel, and P. Vijayarengan, Changes in growth, biochemical constituents, and antioxidant potentials in radish (Raphanus sativus L.) under cobalt stress, Turkish J. Biol., 31, 3 (2007) 127–136.

W. Drost, M. Matzke, T. Backhaus, Heavy metal toxicity to Lemna minor: studies on the time dependence of growth inhibition and the recovery after exposure, Chemosphere, 67 (2007) 36-43.

O. E. Abraham, F.D. Sikoki, E. O. Nwachukwu, Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: state and future perspective, Chemosphere 223 (2019) 285-309.

A.W. Verla, E.N. Verla, C.E. Enyoh, Petroleum hydrocarbons and heavy metals risk of consuming fish species from oguta lake, Imo State, Nigeria, 6th International Science Congress, ISCA-ISC-8EVS-08-Poster, Pune, Maharastra, India, (2016).

L. E. Okoumassoun, C. Brochu, C. Deblois, S. Akponan, M. Marion, D. Averill-Bates, F. Denizeau, Vitellogenin in tilapia male fishes exposed to organochlorine pesticides in Ouémé river in republic of Benin, Sci. Total Environ., 299 (2002) 163–172.

H.B. Moon, H.S. Kim, M. Choi, H.G. Choi, Intake and potential health risk of polycyclic aromatic hydrocarbons associated with seafood consumption in Korea from 2005 to 2007. Arch. Environ. Contam. Toxicol., 58(1) (2010) 214–221.

I. Tolosa, S.J. de Mora, S.W. Fowler, J.P. Villeneuve, J. Bartocci, C. Cattini, Aliphatic and aromatic hydrocarbons in marine biota and coastal sediments from the Gulf and the Gulf of Oman , Mar. Pollut. Bull.,50 (2005) 1619-1633.

M.A. Al-kahtani, Accumulation of Heavy metals in Tilapia fish (Oreochromisniloticus) from Al-khadoud spring, Al-Hassa, Saudi Arabia, Am. J. Appl. Sci., 6 (2009) 2024- 2029.

P. A. Sreedevi, B. Suresh, B. Siraramkrishna, B. Prebhavarhi, K. Radhakrishriaiah, Bioaccumulation of Nickel in organs of the fresh water fish, Cyprinocarpio and the fresh water mussel Lamethdeimarginalis under lethal and sublethal nickel stress, Chemosphere, 24 (1992) 29-36.

S.P. Kumar, J.K.P. Edward, Assessment of metal concentration in the sediment cores of Manakudy estuary, south west coastal of India, Indian J. Mar. Sci., 38 (2009) 235-248.

C.E. Enyoh, E.A. Ihionu, A. W. Verla, N.P. Ebosie, Physicochemical Properties of Palm Oil and Soil from Ihube Community, Okigwe, Imo State, Nigeria, Int. Letter. Nat. Sci., 62 (2017) 35-49.

A.W. Verla, E. N. Verla, C.M. Ajero, K.C. Lele, N.O. Stellamarris, C.E. Enyoh, Biomonitoring of heavy metals in blood and urine of African children from Owerri Metropolis, Eastern Nigeria, J. Chem. Health Risks, 9 (2019) 11-26.

ATSDR, Toxicological Profile for Cadmium. CAS#: 7440-43-9. (2012) https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=48&tid=15

ATSDR, Toxicological Profile for Chromium. CAS#: 7440-47-3 (2012). https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=62&tid=17

ATSDR, Toxicological Profile for Cobalt. CAS#: 7440-48-4 (2004). https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=373&tid=64

ATSDR, Toxicological Profile for Copper. CAS#: 7440-50-8 (2004). https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=206&tid=37

ATSDR, Toxicological Profile for Nickel. CAS# 7440-67-2. (2005). https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=245&tid=44

ATSDR, Toxicological Profile for Lead. CAS# 7439-92-1. (2019). https://www.atsdr.cdc.gov/ToxProfiles/tp.asp?id=96&tid=22

ATSDR, Toxicological Profile for Zinc. CAS#: 7440-66-6 (2005). https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=302&tid=54

N.D. Bedding, A.E. McIntyre, R. Perry, J.N. Lester, Organic contaminants in the aquatic environment I, Sources and occurrence, Sci. Total Environ., 25 (1982) 143–167.

A.G. Burton, R. Pitt, Stormwater Effects Handbook: A Toolbox for Watershed Managers, Scientists, and Engineers, New York: CRC/Lewis Publishers, Chapter 2, (2001).

Anonymous, Text of the stockholm convention, Amended in 2009, 2011, 2013 and 2015, (2008). http://chm.pops.int/TheConvention/Overview/TextoftheConvention/tabid/2232/Default.aspx

A. David, M. Christiana, D. Godfred, J.W. Johan, S. Bjame, C.A. Robert, Uptake of antibiotics from irrigation water by plants, Chemosphere, 157 (2016) 107–114.

E.M. Dettenmaier, W.J. Doucette, B. Bugbee. Chemical hydrophobicity and uptake by plant roots, Environ. Sci. Technol., 43 (2009) 324–329.

M. Trapp, C. McFarlane, Plant contamination, Lewis Publisher, Boca Raton (1995).

M.N.V. Prasad, A State-of-the-Art report on bioremediation, its applications to contaminated sites in India, ministry of environment & forests, government of India, Indian national science academy (2011). http://soilhealth.ucdavis.edu/application/files/2015/4207/9078/BioremediationBook.pdf

Z. Cheng, F. Yao, L. Yuan-wang, C. Hui-qing, L. Zhao-jun, X. Jian-ming, Uptake and translocation of organic pollutants in plants: A review, J. Integr. Agric., 16 (2017) 1659–1668.

N. Liu, Z. Wu, Toxic effects of linear alkylbenzene sulfonate on Chara vulgaris L, Environ. Sci. Pollut. Res., 25 (2018) 4934-4941.

Z. Wang, J. Zhang, L. Song, E. Li, X. Wang, B. Xiao, Effects of linear alkylbenzene sulfonate on the growth and toxin production of Microcystis aeruginosa isolated from Lake Dianchi, Environ. Sci. Pollut. Res., 22 (2015) 5491-5499.

Z. Wu, D. Yu, J. Li, G. Wu, X Niu, Growth and antioxidant response in Hydrocharis dubis (Bl.) Backer exposed to linear alkylbenzene sulfonate, Ecotoxic.,19: (2010) 761-769.

J. Zhou, Z. Wu, D. Yu, Y. Pang, H. Cai, Y. Liu, Toxicity of linear alkylbenzene sulfonate to aquatic plant Potamogeton perfoliatus L, Environ. Sci. Pollut. Res., 25 (2018) 32303-32311.

W. Wang, R. Li, Q. Zhu, X. Tang, Q. Zhao, Transcriptomic and physiological analysis of common duckweed Lemna minor responses to NH4+ toxicity, BMC Plant Biol., 16:92 (2016)1-13.

S. Bayen, G.O. Thomas, H.K. Lee, E.L.Yong, J.P. Obbard, Occurrence of PCBs and PBDEs in green mussels (Perna viridis) sampled from Singapore's coastal waters, Environ. Toxicol. Chem., 22 (2003) 2432–2437.

S. Bayen, Y.H. Gong, H.S. Chin, H. K. Lee, E.L. Yong, E. L., J.P. Obbard, Determination of polybrominated diphenyl ethers (PBDEs) in marine biological tissues using microwave assisted extraction (MAE), J. Chromatogr. A, 1035 (2004) 291–294.

. Bayen, Y.H. Gong, H.S. Chin, H. K. Lee, E.L. Yong, E. L., J.P. Obbard, Organochlorine pesticides and heavy metals in green mussel, Perna viridis, in Singapore, Water Air Soil Pollut., 155 (2004) 103–116.

Bayen, Y.H. Gong, H.S. Chin, H. K. Lee, E.L. Yong, E. L., J.P. Obbard,. Androgenic and estrogenic response of green mussel extracts from Singapore’s coastal environment using a human cellbased bioassay, Environ. Health Perspect., 112 (2004) 1467–1471.

S. Karups, S. Annamalai, J.P. Obbard, Barnacle, attached to the bottle-nose dolphin, Xenobalanus globicipitis (Cirripedia, Coronulidae), Tursiops truncatus (Mammalia, Cetacea) on the southeastern coast of India, J. Crustaceana, 77 (2004) 879–882.

S. Karups, S. Annamalai, J.P. Obbard, Organochlorine residues in marine mammals from the southeast coast of India, Chemosphere, 60 (2004) 891–897.

D. Yahia, E.E. Elsharkawy, Multi pesticide and PCB residues in Nile tilapia and catfish in Assiut city, Egypt, Sci. Total Environ., 466- 467 (2014) 306–314.

Q. Q. Li , A. Loganath, Y.S. Chong, J. Tan, J.P. Obbard, Persistent Organic Pollutants and Adverse Health Effects in Humans, J. Toxicol. Environ. Health Part A, 69 (2006) 1987-2005

S. Safe, Toxicology, structure-function relationship, and human and environmental health impacts of polychlorinated biphenyls: progress and problems, Environ. Health Perspect., 100 (1993) 259-268.

K. Frische, J. Schwarzbauer, M. Ricking, Structural diversity of organochlorine compounds in groundwater affected by an industrial point source, Chemosphere., 81 (2010) 500-8.

W. Brack, H.J. Klamer, M. López de Alda, D. Barceló, Effect-directed analysis of key toxicants in European river basins a review, Environ Sci. Pollut. Res. Int., 14 (2007) 30-38.

E. T. Pawłowicz, Organic pollution of water and human health, Health Problems Civilization, 1 (2017) 32–39.

D. Skutlarek, M. Exner, H. Färber, Perfluorinated surfactants in surface and drinking waters, Environ. Sci. Pollut. Res. Int., 13 (2006) 299-307.

G.C. Windham, D. Lee, P. Mitchell, M. Anderson, M. Petreas, B. Lasley, Exposure to organochlorine compounds and effects on ovarian function. Epidemiol., 16 (2005) 182–190.

R. W. Bretveld, M. Hooiveld, G.A. Zielhuis, A. Pellegrino, I.A. van Rooij, N. Roeleveld, Reproductive disorders among male and female greenhouse workers. Reprod. Toxicol., 25 (2008) 107–114.

J. P. Arrebola, H. Belhassen, F. Artacho-Cordón, R. Ghali, H. Ghorbel, H. Boussen, F. Perez-Carrascosa, J. Expósito, A. Hedhili, N. Olea, Risk of female breast cancer and serum concentrations of organochlorine pesticides and polychlorinated biphenyls: a case-control study in Tunisia, Sci. Total Environ., 520 (2015) 106–113.

Y. Liua, N. Liua, Y. Zhoub, F. Wangb, Y. Zhangb, Z. Wua, Growth and Physiological Responses in Myriophyllum spicatum L. Exposed to Linear Alkylbenzene Sulfonate, (2019). Doi:10.1002/etc.4475

UNEP (Undated), Phytoremediation: An environmentally sound technology for pollution prevention, control and redmediation, an introductory guide to decision-makers, newsletter and technical publications freshwater management series No. 2, United Nations environment programme division of technology, industry, and economics, (2019). http://www.unep.or.jp/Ietc/Publications/Freshwater/FMS2/1.asp , Assessed 18/8/2019

R.R. Brooks, M.F. Chambers, L.J. Nicks, B.H. Robinson, Phytomining, Trends Plant Sci., 3 (1998) 359–362.

Ernst, W.H.O., Bioavailability of heavy metals and decontamination of soil of soil plants, App. Geochem., 11 (1996) 163–167.

A.W. Erakhrumen, Phytoremediation: an environmentally soundtechnology for pollution prevention, control andremediation in developing countries, Edu. Res. Review, 2 (2007) 151-156.

M. Ghosh, S.P. Singh, A review on phytoremediation of heavy metals and utilization of its byproducts, Appl. Ecol. Environ. Res., 3 (2005) 1-18.

USEPA, Treatment technologies for site cleanup: annual status report (12th Edition), Tech. Rep. EPA-542-R-07-012, Solid Waste and Emergency Response (5203P), Washington, DC, USA, (2007).

M. Kuperberg, G. Banuelos, R.L. Chaney, M. Coia, S. Dushenkov, G. Hulet, R. Kristich, M. Kucharski, M. Lasat, S. Lee, Y.M. Li, K. Rose, N. Terry, Removal from soil report, Proceedings from the workshop on phytoremediation of inorganic contaminants, Argonne Natl. Lab, Chicago, IL., (1999).

M.M. Lasat, Phytoextraction of toxic metals: a review of biological mechanisms, J. Environ. Quality, 31 (2002) 109–120.

J. Vymazal, The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: A review of recent development, Water Res., 47 (2013) 4795–4811.

Y.K. Kumar, N. Gupta, A. Kumar, L.M. Reece, N. Singh, S. Rezania, S. A. Khan, Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects, Ecol. Eng., 120 (2018) 274–298.

P.J.C. Favas, J. Pratas, N. Rodrigues, R. D’Souza, M. Varun, M.S. Paul, Metal (loid) accumulation in aquatic plants of a mining area: potential for water quality biomonitoring and biogeochemical prospecting, Chemosphere, 194 (2018) 158–170.

USDA, The PLANTS Database, National Plant Data Team, NRCS, United States Department of Agriculture, Greensboro, NC 27401-4901 USA, (2018). http://plants.usda.gov

E. Aksorn, P. Visoottiviseth, Selection of Suitable Emergent Plants for Removal of Arsenic from Arsenic Contaminated Water, Sci. Asia, 30 (2004) 105-113.

M.N.V. Prasad, M. Greger, P. Aravind, Biogeochemical cycling of trace elements by aquatic and wetland plants: relevance to phytoremediation. In: Prasad MNV, Sajwan KS, Naidu R (eds), Trace elements in the environment: Biogeochemistry, Biotechnology and Bioremediation. CRC Press, Florida, USA, Taylor and Francis, Chap 24, 443-474 (2005).

M.N.V. Prasad, M. Greger, B.N. Smith, Aquatic macrophytes, in metals in the environment: Analysis by biodiversity, Prasad MNV (ed) Marcel Dekker Inc., New York, 259 (2001).

T.G. Sors, D.R. Ellis, D.E. Salt, Selenium uptake, translocation, assimilation and metabolic fate in plants, Photosynth. Res., 86 (2005) 373–389.

X.Yu, J. Gu, Phyto-transport and assimilation of selenium, plant-based remediation processes, Springer, 159-175 (2013). https://doi.org/10.1007/978-3-642-35564-6_9

J. Kania, M. Hannigan, T.E. Kujundzic, Phytoremediation, Halifax, Canada, 1-7 (2002). http://www.colorado.edu/MCEN/EnvTox/Phytoremedy.pdf

HCSM, Constructed Stormwater Wetlands, Pervious Pavement. Horry County Stormwater Management,(2016). http://stormwater.horrycounty.org/Home/LowImpactDevelopment/ConstructedStormwaterWetlands.aspx . Accessed 6/9/2019.

D.C. Adriano, W.W. Wenzel, J. Vangronsveld, N.S. Bolan, Role of assisted natural remediation in environmental cleanup, Geoderma, 122 (2004) 121-142.

M.N.V. Prasad, Heavy metal stress in plants: from biomolecules to ecosystems, Narosa Publishing House, New Delhi, 2nd Ed., 462, 2004.

P. K. Rai, Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: An ecosustainable approach, I. J. Phytoremed., 10 (2008) 133-160.

I.T. Cousins, D. Mackay, Strategies for including vegetation compartments in multimedia models, Chemosphere, 44 (2001) 643-654.

J. Fismes, G.C. Perrin, B.P. Empereur, J.L. Morel, Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils, J. Environ. Quality, 31 (2002) 1649–1656.

C. Moeckel, G. Thomas, J.L. Barber, K.C. Jones, Uptake and storage of PCBs by plant cuticles. Environ. Sci. Technol., 42 (2008)100-105.

J. Y. Liu, L.S. Jerald, Uptake and translocation of lesser-chlorinated polychlorinated biphenyls (PCBs) in whole hybrid poplar plants after hydroponic exposure, Chemosphere, 73 (2008)1608–1616.

X. Hua, M. Li, Y. Su, D. Dong, Z. Guo, D. Liang, The degradation of linear alkylbenzene sulfonate (LAS) in the presence of light and natural biofilms: The important role of photosynthesis, J. Hazard. Mater., 229 (2012) 450-454.

K. Bhaskaran, V. Nadaraja, S. Tumbath, B. Shah, G. P. Veetil, Phytoremediation of perchlorate by free floating macrophytes, J. Hazard. Mater., 260 (2013) 901–906.

Öztürk M, Ashraf M, Aksoy A, Ahmad M S A, Hakeem K R, eds., Plants, pollutants and remediation, Springer Netherlands, USA, 241-305, 2015.

Y. Uysal, F. Taner, Effect of pH, temperature, and lead concentration on the bioremoval of lead from water usingLemna minor, Int. J. Phytoremed., 11 (2009) 591–608.

Y. Uysal, Removal of chromium ions from wastewater by duckweed, Lemna minor L. by using a pilot system with continuous flow, J. Hazard. Mater., 263 (2013) 486–492.

V.A. Nzengung, C.H. Wang, G. Harvey, Plant-mediated transformation of 329 perchlorate into chloride, Environ. Sci. Technol,. 33 (1999) 1470–1478.

S. Alvarado, M. Guédez, M.P. Lué-Merú, G. Nelson, A. Alvaro, A.C. Jesús, Z. Gyula, Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor), Bioresour. Technol., 99 (2008) 8436-8440.

M. Sasmaz, E. Obek, A. Sasmaz, Bioaccumulation of uranium and thorium by Lemna minor and Lemna gibba in Pb-Zn-Ag tailing water, Bull. Environ. Contam. Toxicol., 97 (2016) 832-837.

A. Sandhi, T. Landberg, M. Greger, Phytofiltration of arsenic by aquatic moss (Warnstorfia fluitans), Environ. Pollut., 237 (2017) 1098-1105.

F. Tufaner, Post-treatment of effluents from UASB reactor treating industrial wastewater sediment by constructed wetland, Environ. Technol., (2018) accepted manuscript. doi:10.1080/09593330.2018.1514073

B. Boonyapookana, E. S. Upatham, M. Kruatrachue, P. Pokethitiyook, S. Singhakaew, Phytoaccumulation and Phytotoxicity of Cadmium and Chromium in Duckweed Wolffia globose, Int. J. Phytoremed., 4 (2002) 87–100.

D. Baldantoni, A. Alfani, P. Di Tommasi, G. Bartoli, A. V. De Santo, Assessment of macro and microelement accumulation capability of two aquatic plants, Environ. Pollut.,130 (2004) 149–156.

X. Lu, M. Kruatrachue, P. Pokethitiyook, K. Homyok, Removal of cadmium and zinc by water hyacinth, Sci. Asia, 30 (2004) 93–103.

A. Basile, S. Sorbo, B. Conte, R.C. Cobianchi, F. Trinchella, C. Capasso, V. Carginale, Toxicity, Accumulation, and removal of heavy metals by three aquatic macrophytes, Int. J. Phytorem., 14 (2012) 374-387.

D. Chaudhuri, A. Majumder, A.K. Misra, K. Bandyopadhyay, Cadmium removal by Lemna minor and Spirodela polyrhiza, Int. J. Phytorem., 16 (2013) 1119-1132.

F. Hadi, A. Ahmad, N. Ali, Cadmium (Cd) removal from saline water by Veronica anagallis and Epilobium laxum in hydroponic system, Sci. Res., 14 (2014) 935–944.

H. Vaseem, T.K. Banerjee, Efficacy of phytoremediation technology in decontaminating the toxic effluent released during recovery of metals from polymetallic sea nodules, Int. Aquat. Res., 7 (2015) 17-26.

E.Ü. Tunca, K. Terzioğlu, H. Türe, The effects of alginate microspheres on phytoremediation and growth of Lemna minor in the presence of Cd, Chem. Ecol., 33 (2017) 1-17.

E. Amare, F. Kebede, W. Mulat, Wastewater treatment by Lemna minor and Azolla filiculoides in tropical semiarid regions of Ethiopia, Ecolog. Eng., 120, (2018) 464-473.

Q. Lu, T. Zhang, W. Zhang, C. Su, Y. Yang, D. Hu, Q. X u, Alleviation of cadmium toxicity in Lemna minor by exogenous salicylic acid, Ecotoxicol. Environ. Saf., 147, (2018) 500-508.

A. Shirinpur-Valadi, A. Hatamzadeh, S. Sedaghathoor, Study of the accumulation of contaminants by Cyperus alternifolius, Lemna minor, Eichhornia crassipes, and Canna × generalis in some contaminated aquatic environments, Environ. Sci. Pollut. Res., 26 (2019) 21340–21350.

M.A. Maine, N.L. Sune, S.C. Lagger, Chromium bioaccumulation: comparison of the capacity of two floating aquatic macrophytes, Water Res., 38 (2004) 1494–1501.

R. Bennicelli, Z. Stępniewska, A. Banach, K. Szajnocha, J. Ostrowski, The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water, Chemosphere J., 55 (2004) 141–146.

P. Miretzky, A. Saralegui, C.A. Fernandez, Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina), Chemosphere J., 57 (2004) 997-1005.

T. P. Choo, C. K. Lee, K. S. Low, O. Hishamuddin, Accumulation of chromium (VI) from aqueous solutions using water lilies (Nymphaea spontanea), Chemosphere J., 62 (2006) 961–967.

C. Bragato, H. Brix, M. Malagoli, Accumulation of nutrients and heavy metals in Phragmites australis Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed, Environ. Pollut., 144 (2006) 967-975.

P.K. Rai, Phytoremediation of heavy metals in a tropical impoundment of industrial region, Environ. Monit. Assess., 165 (2010) 529-537.

J. Augustynowicza, M. Grosickia, E. Hanus-Fajersk, M. Lekka, A. Waloszek, H. Kołoczek, Chromium(VI) bioremediation by aquatic macrophyte Callitriche cophocarpa Sendtn. Chemosphere, 79 (2010) 1077-1083.

E. Üçüncü, E, Tunca, S. Fikirdeşici, A.D. Özkan, A. Altındağ, Phytoremediation of Cu, Cr and Pb mixtures by Lemna minor, Bull. Environ. Contam. Toxicol., 91 (2013) 600-604.

E. Üçüncü, E, Tunca, S. Fikirdeşici, A. Altındağ, Decrease and increase profile of Cu, Cr and Pb during stable phase of removal by duckweed (Lemna minor L.), Int. J. Phytorem., 15 (2013) 376-384.

C. Tang, J. Song, X. Hu, X. Hu, Y. Zhao, B. Li, D. Ou, L. Peng, Exogenous spermidine enhanced Pb tolerance in Salix matsudana by promoting Pb accumulation in roots and spermidine, nitric oxide, andantioxidant system levels in leaves, Ecol. Eng., 107 (2017) 41-48.

J. Vymazal, Concentration is not enough to evaluate accumulation of heavy metals and nutrients in plants, Sci. Total Environ., 544 (2016) 495–498.

P. Saha, O. Shinde, S. Sarkar, Phytoremediation of industrial mines wastewater using water hyacinth, Int. J. Phytoremed. 19 (2017) 87–96.

Y. Kara, Bioaccumulation of copper from contaminated wastewater by using Lemna minor, Bull. Environ. Contam. Toxicol., 72 (2004) 467-471.

L. Zhang, S. Tian, Z. Ye, H. Peng, The efficiency of heavy metal removal from contaminated water by elsholtzia argi and elsholtzia splendens; Proc. of the international symposium of phytoremediation and ecosystem health, Health J., 10 (2005) 17-28.

S. Mishra, M. Mohanty, C. Pradhan, H.K. Patra, R. Das, S. Sahoo, Physico-chemical assessment of paper mill effluent and its heavy metal remediation using aquatic macrophytes-a case study at JK paper mill, Rayagada, India, Environ. Monit. Assess., 185 (2012) 4347-4359.

J.A. Romero-Hernández A., Amaya-Chávez P. Balderas-Hernández G. Roa-Morales N. González-Rivas, M.A. Balderas-Plata, Tolerance and hyperaccumulation of a mixture heavy metals (Cu, Pb, Hg and Zn) by four aquatic macrophytes, Int J Phytorem, 19 (2016) 239-245.

R. Othman, R. Ramya, Z.M. Baharuddin, K.S.H. Hashim, M. Yaman, Response of Lemna minor and Salninia natans as phytoremediation agents towards Fe, Cu and Zn toxicities via in vivo model system, J. Teknologi. Sci. Eng., 77 (2015) 101-109.

R. Sallah-Ud-Din, M. Farid, R. Saeed, S. Ali, M. Rizwan, H.M. Tauqeer, S.A.H. Bukhari, Citric acid enhanced the antioxidant defense system and chromium uptake by Lemna minor L. grown in hydroponics under Cr stress, Environ. Sci. Pollut. Res., 24 (2017) 17669-17678,

T.M. Galal, E.M. Eid, M.A. Dakhil, L.M. Hassan,. Bioaccumulation and rhizofilteration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands, Int. J. Phytoremediation., 5 (2017) 10-19.

T.M. Galal, F.A. Gharib, S.M. Ghazi, K.H. Mansour, Phytostabilization of heavy metals by the emergent macrophyte Vossia cuspidata (Roxb.) Griff.: a phytoremediation approach, Int. J. Phytoremediation, 19 (2017) 992–999.

I. Panfili, M.L. Bartucca, E. Ballerini, D.D. Buono, Combination of aquatic species and safeners improves the remediation of copper polluted water, Sci. Total. Environ., 601 (2017) 1263-1270.

C. Hu, L. Liu, X. Li, Y. Xu, Z. Ge, Y. Zhao, Effect of graphene oxide on copper stress in Lemna minor L.: evaluating growth, biochemical responses, and nutrient uptake, J. Hazard. Mater., 17 (2017) 30570-30578.

Z. Abbas, F. Arooj, S. Ali, I. E. Zaheer, M. Rizwan, M. A. Riaz, Phytoremediation of landfill leachate waste contaminants through floating bed technique using water hyacinth and water lettuce, Int. J. Phytoremed., 7 (2019) 1–12.

J. Marrugo-Negrete,, , G. Enamorado-Montes, J. Durango-Hernández, J. Pinedo-Hernández, S. Díez, Removal of mercury from gold mine effluents using Limnocharis flava in constructed wetlands, Chemosphere, 167 (2017) 188–192.

R. Zurayk, B. Sukkariyah, R. Baalbaki, D. A. Ghanem, Ni Phytoaccumulation in Mentha Aquatica L. and mentha sylvestris L. Water, Air, and Soil Pollut., 139 (2002) 355–364.

N.R. Axtell, S.P.K. Sternberg, K. Claussen, Lead and nickel removal using microspora and lemna minor, Bioresour. Technol., 89 (2003) 41–48.

S. T. Hussain, T. Mahmood, S. A. Malik, Phytoremediation technologies for Ni by water hyacinth, African J. Biotech., 9 (2010) 8-23.

S. Pal, H.B. Singh, A. Rakshit, Potential of different crop species for nickel and cadmium phytoremediation in peri-urban areas of Varanasi district (India) with more than twenty years of wastewater irrigation history, Italian J. Agron., 8 (2013) e8.

C. Nevena, D. Vilotic, M. Nesic, M. Veselinovic, D. Drazic, S. Mitrovic, Phytoremediation potential of canna indica L in water contaminated with lead Fresenius, Environ. Bull., 259 (2016) 3728-3733.

E. Lahive, J. O’Halloran, M.A.K. Jansen, A marriage of convenience; a simple food chain comprised of Lemna minor (L.) and Gammarus pulex (L.) to study the dietary transfer of zinc, Plant Biology, 17 (2013) 75-81.

J. Yang, J. Yang, J. Huang, Role of co-planting and chitosan in Phytoextraction of As and heavy metals by Pteris vittata and castor bean – a field case, Ecol. Eng., 109 (2017) 35–40.

J. Yang, G. Zheng, J. Yang, X. Wan, B. Song, W. Cai, J. Guo, Phytoaccumulation of heavy metals (Pb, Zn, and Cd) by 10 wetland plant species under different hydrological regimes. Ecol. Eng., 107 (2017) 56–64.

N. Dinh, A.V.D. Ent, D.R. Mulligan, A.V. Nguyen, Zinc and lead accumulation characteristics and in vivo distribution of Zn in the hyperaccumulator Noccaea caerulescens elucidated with fluorescent probes and laser confocal microscopy, Environ. Exp. Bot., 147 (2018) 1–12.

B.O. Clarke, S.R. Smith, Review of ‘emerging’ organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids, Environ. Int., 37 (2011) 226–247.

N.S. Thomaidis, A.G. Asimakopoulos, A.A. Bletsou, Emerging contaminants: a tutorial mini-review, global NEST J., 14 (2012) 72-79.

M.O.C. Ogwuegbu, C. K. Enenebeaku, C.S.Obi, N. P. Ebosie, C.E. Enyoh, Stoichiometric Determination of Fe (II), Ni (II) and Cu (II) Complexes of Metronidazole, Int. J. Chem. Sci., 3 (2019) 25-29.

M. Qu, N. Li, H. Li, T. Yang, W. Liu, Y. Yan, X. Feng, D. Zhu, Phytoextraction and biodegradation of atrazine by Myriophyllum spicatum and evaluation of bacterial communities involved in atrazine degradation in lake sediment, Chemosphere, 209 (2018) 439-448.

D.H. Tran, T.M.H. Vi, T.T.H. Dang, R. Narbaitz, Pollutant removal by Canna Generalis in tropical constructed wetlands for domestic wastewater treatment, Global J. Environ. Sci. Manage., 5 (2019) 331-344.

P. Prasertsup, N. Ariyakanon, Removal of Chlorpyrifos by Water Lettuce (Pistia stratiotes L.) and Duckweed (Lemna minor L.), Int J, Phytoremed., 13 (2011) 383-395.

M. Uddin, M. Islam, M. Abedin, Adsorption of phenol from aqueous solution by water hyacinth, ARPN J., Engin. Appl. Sci., 2 (2007) 11-16.

A. L. Seyfferth, M. K. Henderson, D. R. Parker, Effects of common soil anions and pH on the uptake and accumulation of perchlorate in lettuce, Plant Soil, 302 (2008) 139-148.

J. Wang, X. Liu, X. Zhang, X. Liang, W. Zhang, Growth response and phytoremediation ability of Reed for diesel contaminant, Procedia Environ. Sci., 8 (2011) 68-74.

Zhong G, Wu Z, Yin J, Chai L, 2018. Responses of Hydrilla verticillata (L.f.) Royle and Vallisneria natans (Lour.) Hara to glyphosate exposure, Chemosphere, 193 (2018) 385-393.

S. M. Idris, P. L. Jones, S. A. Salzman, G. Croatto, G. Allinson, Evaluation of the giant reed (Arundo donax) in horizontal subsurface flow wetlands for the treatment of recirculating aquaculture system effluent, Environ.Sci. Pollut. Res., 19 (2011) 1159–1170.

Ha W., D. L. Suarez, S. M. Lesch, Perchlorate uptake in Spinach as related to perchlorate, nitrate, and chloride concentrations in irrigation water, Environ. Sci. Technol., 45 (2011) 9363–9371.

S. Susarla, S.T. Bacchus, N.L. Wolfe, S.C. Mccutcheon, Phytotransformation of perchlorate and identification of metabolic products in Myriophyllum aquaticum, Int. J. Phytoremed., 1 (1999) 97–107.

T. Machate, H. Noll, H. Behrens, A. Kettrup, Degradation of phenanthrene and hydraulic characteristics in a constructed wetland, Water Res., 31 (1997) 554-560.

A. Priya, K. Avishek, G. Pathak, Assessing the potentials of Lemna minor in the treatment of domestic wastewater at pilot scale, Environ. Monit. Assess., 184 (2012) 4301-4307.

D.D. Yilmaz, H. Akbulut, Effect of circulation on wastewater treatment by Lemna gibba and Lemna minor (floating aquatic macrophytes), Int. J. Phytorem., 13 (2011) 970-984.

X. Zhao, G.K. Moates, N. Wellner, S.R.A. Collins, M.J. Coleman, K.W. Waldron, Chemical characterisation and analysis of the cell wall polysaccharides of duckweed (Lemna minor), Carbohydr. Polym., 14 (2014) 436-446.

W. Van Echelpoel, P. Boets, P.L.M. Goethals, Functional response (FR) and relative growth rate (RGR) Do not show the known invasiveness of Lemna minuta (Kunth), PLoS, 11 (2016) e0166132.

K.K. Yadav, N. Gupta, V. Kumar, J.K. Singh, Bioremediation of heavy metals from contaminated sites using potential species: a review, Indian J. Environ. Prot., 37 (2017) 65-84.

N.K. Kilic, E. Duygu, G. Dönmez, Triacontanol hormone stimulates population, growth and Brilliant Blue R dye removal by common duckweed from culture media, J. Hazard. Mater., 182 (2010) 525-530.

D.A. Yaseen, M. Scholz, Comparison of experimental ponds for the treatment of dye wastewater under controlled and semi-natural conditions, Environ. Sci. Pollut. Res. Int., 24 (2017) 16031-16040.

E. Neag, D. Malschi,, A. Măicăneanu, Isotherm and kinetic modelling of toluidine blue (TB) removal from aqueous solution using Lemna minor, Int. J. Phytorem., 20 (2018) 1049-1054.

Souza, T. D. de, Borges, A. C., Matos, A. T. de, Veloso, R. W., & Braga, A. F. (2018). Kinetics of arsenic absorption by the species Eichhornia crassipes and Lemna valdiviana under optimized conditions, Chemosphere, 209 (2018) 866–874.

A.W. Verla, E. N. Verla, C. E. Enyoh, Chemometrics in environmental analytical chemistry: A review of mathematical models and their applications. Proceedings of 3rd world environment day conference, Imo State University, Nigeria, 16, 2019.

A.W. Verla, E.N. Verla, C.M. Ajero, K.C. Lele, N.O. Stellamarris, C.E. Enyoh, Biomonitoring of heavy metals in blood and urine of African children from Owerri Metropolis, Eastern Nigeria, J. Chem. Health Risk., 9 (2019) 11-26.

A.W. Verla, C.E. Enyoh, V.E. Ngozi, P.N. Okeke, S.S. Pingale, Chemometric assessment of orashi river after confluence with oguta lake, Indonesian J. Fundamental Appl. Chem., (2019). Accepted manuscript.

M.S. Islam, T. Saito, M. Kurasaki, Phytofiltration of arsenic and cadmium by using an aquatic plant, micranthemum umbrosum: phytotoxicity, uptake kinetics, and mechanism, Ecotoxicol. Environ. Safe., 112 (2015) 193-200.

M. Srivastava, L.Q. Ma, N. Singh, S. Singh, Antioxidant responses of hyperaccumulator and sensitive fern species to arsenic, J. Exp. Bot., 56 (2005) 1335-1342.

R.A. Fisher, Some remarks on the methods formulated in a recent article on ‘The quantitative analysis of plant growth, Ann. Appl. Biol., 7 (1921) 367-372.

D.A. Wilkins, The measurement of tolerance to edaphic factors by means of root growth, New Phytol., 80 (1978) 623-633.

J.A. Romero-Hernández, A. Amaya-Chávez, P. Balderas-Hernández, G. Roa-Morales, N. González-Rivas, M.A. Balderas-Plata, Tolerance and hyperaccumulation of a mixture heavy metals (Cu, Pb, Hg and Zn) by four aquatic macrophytes, Int. J. Phytorem., 19 (2016) 239-245.

V. Vadivelan, K.V. Kumar, Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk, J. Colloid Interface Sci., 286 (2005) 90-100.

A.W. Verla, M. Horsfall (Jnr), E.N Verla, A.I. Spiff, Some aspect of surface chemistry of activated carbon prepared from fluted pumpkin (Telfairia occidentalis Hook. F.) by physical activation, Int. J. Chem. Sci. Technol., 2 (2012) 224‐230.

B. O. Isiuku, C. N. Nwosu, Fixed-bed adsorption of metanil yellow from aqueous solution on HNO3-treated-H3PO4-activated carbon frm gmelina bark, Asian J. Chem., 29 (2017) 475-479.

F. Zurita, J. De Anda, M.A. Belmont, Treatment of domestic wastewater and production of commercial flowers in vertical and horizontal subsurface-flow constructed wetlands, Ecol. Eng., 35 (2009) 861–869.

O. C. Türker, A. Yakar, N. Gür. Bioaccumulation and toxicity assessment of irrigation water contaminated with boron (B) using duckweed (Lemna gibba L.) in a batch reactor system, J.Hazard. Mater., 324 (2017) 151–159.

Y.H. Su, Y.G. Zhu, Transport mechanisms for the uptake of organic compounds by rice (Oryza sativa) roots, Environ. Pollut., 148 (2007) 94–100.

V.A. Wirnkor, E.C. Ebere, V.E. Ngozi, N.K. Oharley, Microplastic-toxic chemical interaction: A review study on quantified levels, mechanism and implication, SN Appl. Sci., (2019). https://10.1007/s42452-019-1352-0

A. A. Romeh, Phytoremediation of cyanophos insecticide by Plantago major L. in water, J. Environ. Health Sci. Eng., 12 (2014) 38.

M. Michel, B. Buszewski, HPLC determination of pesticide residue isolated from food matrices, J. Liq. Chromatogr. Related Technol., 25 (2002) 2293-2306.

C. Ferrer, M.J. Gomez, J.F. Garcıa-Reyes, I. Ferrer, Determination of pesticide residues in olives and olive oil by matrix solid-phase dispersion followed by gas chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry, J. Chromatogr. A, 1069 (2005) 183−194.

C. Tsoutsi, C. I. Konstantinou, D. Hela, T. Albanis, Screening method for organophosphorus insecticides and their metabolites in olive oil samples based on headspace solid-phase microextraction coupled with gas chromatography, Anal. Chim. Acta, 573 (2006) 216− 222.

N. Chamkasem, L.W. Ollis, T. Harmon, S. Lee, G. Mercer, Analysis of 136 Pesticides in Avocado Using a Modified QuEChERS Method with LC-MS/MS and GC-MS/MS, J. Agric. Food Chem., 61 (2013) 315−2329.

Environment  Chemistry Research
Published
2019-09-24
How to Cite
Beniah Obinna, I., & Ebere, *Enyoh. (2019). A review: Water pollution by heavy metal and organic pollutants: Brief review of sources, effects and progress on remediation with aquatic plants. Analytical Methods in Environmental Chemistry Journal, 2(03), 5-38. https://doi.org/10.24200/amecj.v2.i03.66
Section
Review Article

Most read articles by the same author(s)