Air Pollution Method: A new method based on ionic liquid passed on mesoporous silica nanoparticles for removal of manganese dust in the workplace air

Vol 2, Issue 01, Pages 5-14,*** Field:Environmental chemistry

  • parisa paydar Occupational Health Engineering Department, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
  • Ali Faghihi Zarandi
Keywords: Manganese dust, Air pollution, Ionic liquid, Mesoporous silica nanoparticles, Solid phase adsorption method

Abstract

Chronic effect of manganese exposure to humans caused the dysfunction of nervous system. An applied sorbent based on hydrophobic ionic liquid passed on mesoporous silica nanoparticles was used for adsorption/removal of manganese dust (Mn) from workplace air by solid phase adsorption method. In bench scale set up, 5 mL of standard solution of nitrate and oxide of Mn (0.2-5 mg L-1) was used for generation of manganese dust in pure air by drying procedure, and then was passed through column of IL/MSNPs by SKC pump with flow rate  of 200-500 mL min-1 by SKC pump. The Mn particles separated from column of IL/MSNPs by irrigation of nitric acid solution before determined by F-AAS/ET-AAS. In optimized conditions, the adsorption capacity of MSNPs and IL/MSNPs for Mn removal from air in batch system (1 Li) was obtained 118.5 mg g-1 and 216.2 mg g-1, respectively.

References

R. A. Wuana, F. E. Okieimen, Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecology.,2011 (2011).

H. Ali, E. Khan, M. A. Sajad, Phytoremediation of heavy metals—concepts and applications. Chemosphere., 91(2013) 869-881.

E. R. Donati, Heavy Metals in the Environment: Microorganisms and Bioremediation. CRC Press: 2018.

J.N. Bhakta, Metal toxicity in microorganism. Handbook of research on inventive bioremediation techniques. IGI Global, PA 2017, 1-23.

W. Mertz, The essential trace elements. Science., 213(1981) 1332-1338.

S. Jena, S. K. Dey, Heavy metals. Am J. Environ. S., 1(2017) 48-60.

P. Chen, J. Bornhorst, M. Aschner, Manganese metabolism in humans. Front.Biosci., 23(2018) 1655-1679.

M. G. Baker, C. D. Simpson, B. Stover, L. Sheppard, H. Checkoway, B. A. Racette, N. S. Seixas, Blood manganese as an exposure biomarker: state of the evidence. J. Occup. environ. Hgy ., 11 (2014) 210-217.

J. L. Aschner, M. Aschner, Nutritional aspects of manganese homeostasis. Mol. Aspects Med ., 26(2005) 353-362.

B. L.Carson, Toxicology Biological Monitoring of Metals in Humans. CRC Press: 2018.

N. H. Mthombeni, S. Mbakop1and, M. S. Onyango, In Adsorptive Removal of Manganese from Industrial and Mining Wastewater, Proceedings of Sustainable Research and Innovation Conference., (2016) 36-45.

J. Morton, H. Beattie, E. Leese, K. Jones, The usefulness of biological monitoring in determining manganese exposure in the workplace. In BMJ Publishing Group Ltd:

Occup. Environ. Med., 75(2018).

W. Horst, The physiology of manganese toxicity. In Manganese in soils and plants, Springer: Conn Chem.,1988; pp 175-188.

M. Gawlik, M. B. Gawlik, I. Smaga, M. Filip, Manganese neurotoxicity and protective effects of resveratrol and quercetin in preclinical research. Pharmacol Rep ., 69(2017) 322-330.

P. M. Eller, M. E. Cassinelli, NIOSH manual of analytical methods. Diane Publishing., 94(1994).

J. E. C. Lerner, M. L. Elordi, M. A. Orte, D. Giuliani, de los Angeles Gutierrez, M.; Sanchez, E.; Sambeth, J. E.; Porta, A. A., Exposure and risk analysis to particulate matter, metals, and polycyclic aromatic hydrocarbon at different workplaces in Argentina. Environ Sci. Pollut Res., (2018) 1-10.

N. Solovyev, M. Vinceti, P. Grill, J. Mandrioli, B. Michalke, Redox speciation of iron, manganese, and copper in cerebrospinal fluid by strong cation exchange chromatography–sector field inductively coupled plasma mass spectrometry. Anal. Chim. Acta., 973(2017) 25-33.

J. Griboff, D. A. Wunderlin, M. V. Monferran, Metals, As and Se determination by inductively coupled plasma-mass spectrometry (ICP-MS) in edible fish collected from three eutrophic reservoirs. Their consumption represents a risk for human health? Microchem. J., 130(2017) 236-244.

A. A. Alqadami, M. Naushad, M. A. Abdalla, M. R. Khan, Z. A. Alothman, S. M. Wabaidur, A. A. Ghfar, Determination of heavy metals in skin-whitening cosmetics using microwave digestion and inductively coupled plasma atomic emission spectrometry. IET nanobiotechnol., 11(2017) 597-603.

M. Baghdadi, F. Shemirani, H. R. L. Z. Zhad, Determination of cobalt in high-salinity reverse osmosis concentrates using flame atomic absorption spectrometry after cold-induced aggregation microextraction. Anal Methods., 8(2016) 1908-1913.

A. Prkić, A. Jurić, J. Giljanović, N. Politeo, V. Sokol, P. Bošković, M. Brkljača, A. Stipišić, C. Fernandez, T. Vukušić, Monitoring content of cadmium, calcium, copper, iron, lead, magnesium and manganese in tea leaves by electrothermal and flame atomizer atomic absorption spectrometry. Open. Chem., 15 (2017) 200-207.

J. LIU, X.f. HU, Gray System Study on the Influence of Particle Size Distribution on Adsorption Performance of Activated Carbon. Bull Chin Ceram Soc ., 4(2010) 015.

G. G. Wildgoose, C. E. Banks, R. G. Compton, Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small. Wiley Online Library ., 2 (2006) 182-193.

M. Roldán-Pijuán, R. Lucena, S. Cárdenas, M. Valcárcel, Micro-solid phase extraction based on oxidized single-walled carbon nanohorns immobilized on a stir borosilicate disk: application to the preconcentration of the endocrine disruptor benzophenone-3. Microchem. J, 115(2014) 87-94.

J. M. Jiménez-Soto, S. Cárdenas, M. Valcárcel, Evaluation of carbon nanocones/disks as sorbent material for solid-phase extraction. J. Chromatogr ., 30( 2009) 5626-5633.

I. E. M. Carpio, J. D. Mangadlao, H. N. Nguyen, R. C. Advincula, D. F. Rodrigues, Graphene oxide functionalized with ethylenediamine triacetic acid for heavy metal adsorption and anti-microbial applications. Carbon., 77(2014) 289-301.

A. Miller, P. L. Drake, P. Hintz, M. Habjan, Characterizing exposures to airborne metals and nanoparticle emissions in a refinery. Annal.Occup. Hyg., 54 (2010) 504-513.

Y. Mao, J. Yuan, J. Zhong, Density functional calculation of transition metal adatom adsorption on graphene. J. Phys. Condens. Matter., 20(2008) 115209.

D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev., 39(2010) 228-240.

M. Oregui-Bengoechea, N. Miletić, W. Hao,; F. Björnerbäck, M. H. Rosnes,;S. J. Garitaonandia, N. Hedin, P. L. Arias, T. Barth, High-Performance Magnetic Activated Carbon from Solid Waste from Lignin Conversion Processes. 2. Their Use as NiMo Catalyst Supports for Lignin Conversion. ACS. Sustain. Chem. Eng., 5(2017) 11226-11237.

D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. science., 279(1998) 548-552.

P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky, Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature., 396(1998) 152.

R. Guillet-Nicolas, R. Ahmad, K. A. Cychosz, F. Kleitz, M. Thommes, Insights into the pore structure of KIT-6 and SBA-15 ordered mesoporous silica–recent advances by combining physical adsorption with mercury porosimetry. New J. Chem., 40(2016) 4351-4360.

K.M. Choi, H.-C. An, Characterization and exposure measurement for indium oxide nanofibers generated as byproducts in the LED manufacturing environment. J. Occup. Environ. Hyg., 13(2016) D23-D30.

Published
2019-03-17
How to Cite
paydar, parisa, & Faghihi Zarandi, A. (2019). Air Pollution Method: A new method based on ionic liquid passed on mesoporous silica nanoparticles for removal of manganese dust in the workplace air. Analytical Methods in Environmental Chemistry Journal, 2(01), 5-14. https://doi.org/10.24200/amecj.v2.i01.52
Section
Original Article