Analytical Methods: Electrochemical azido-selenenylation of some olefins by cyclic voltammetry and controlled-potential coulometry

Volume1,Issue01,Pages67-74,Ar-AMC-38 *** Filed: Human Bioanalysis

  • Ahmad Rouhollahi Chemistry Department, Faculty of Science, K.N. Toosi University of Technology, Tehran 15418, Iran.
  • Zeenat Asghari
  • Barahman Movassagh
Keywords: Electrosynthesis, Diphenyl diselenide, Markovnikov, Cyclic voltammetry, Controlled-potential coulometry

Abstract

Electrochemical azido-phenylselenenylation of some olefins was studied with the oxidation of diphenyl diselenide in the presence of some olefins and sodium azide in dimethyl formamide containing tetra butyl ammonium perchlorate as supporting electrolyte in an H-type cell. The electrochemical oxidation of the mixture of (PhSe)2, olefins, and NaN3 was studied by cyclic voltammetry and controlled-potential coulometry. Anti product can be obtained with Markovnikov orientation. This product was characterized .by 1H, 13C NMR, and IR spectroscopy.

Author Biography

Ahmad Rouhollahi, Chemistry Department, Faculty of Science, K.N. Toosi University of Technology, Tehran 15418, Iran.

Chemistry Department, Faculty of Science, K.N. Toosi University of Technology, Tehran 15418, Iran

References

L. Prashanth, K. K. Kattapagari, R. T. Chitturi, V. R. Reddy Baddam, L. K. Prasa, A review on role of essential trace elements in health and disease, J. Dr. NTR Un. Health Sci., 4 (2015) 75-85.

V. Gandin, P. Khalkar,J. Braude, A. P. Fernandes, Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment, Free Radical Biol. Med.,127 (2018) 80-97.

R. L. Quispe, M. L. Jaramillo,. L. S. Galant, D. Engel, A. L. Dafre, J. B. Teixeira da Rocha, R. Radi, M. Farina, A. F. de Bem, Diphenyl diselenide protects neuronal cells against oxidative stress and mitochondrial dysfunction: Involvement of the glutathione-dependent antioxidant system, Redox Biol., 20 (2019) 118-129.

A. R. Patra, S. Singha Roy, A. Basu, A. Bhuniya, A. Bhattacharjee, S. Hajra, U. Hossain Sk, R.Baral, S. Bhattacharya, Design and synthesis of coumarin-based organoselenium as a new hit for myeloprotection and synergistic therapeutic efficacy in adjuvant therapy Scientific eportsvolume 8, Article number: 2194 (2018)

C. Narajji, M. D. Karvekar, A. K. Das, Biological importance of organoselenium compounds, Indian J. Pharm. Sci., 69 (2007) 344-351.

E. J. Lenardão, C. Santi, L. Sancineto, Organoselenium compounds as reagents and catalysts to develop new green protocols, New Frontiers in Organoselenium Compounds, 2018, pp. 1–97, 2018.

H. D. S. Souza, R. P. F. de Sousa, B. F. Lira, R. F. Vilela, N. H. P. B. Borges, J. P. de Siqueira-Junior, E. O. Lima, J. U. G. Jardim, G. A. T. da Silva, J. M. Barbosa-Filho, P. F. de Athayde-Filho, Synthesis, in silico study and antimicrobial evaluation of new selenoglycolicamides, Braz. Chem. Soc., 30 (2019) 188-197.

C. Santi, R.G. Jacob, B. Monti, L. Bagnoli, L. Sancineto , E.J. Lenardão , Review: Water and aqueous mixtures as convenient alternative media for organoselenium chemistry, Molecules, 21 (2016) 1482.

A. Tepecik, Z. Altin, S. Erturan, The Diorganoselenium and Selenides Compounds Electrochemistry J. Autom. Methods Manage. Chem. 1 (2008) 1-6.

S. Möhle, M. Zirbes, E. Rodrigo, T. Gieshoff , A. Wiebe, S. R. Waldvogel, Modern Electrochemical Aspects for the Synthesis of Value-Added Organic Products, Angew.Chem. Int. Ed., 57 (2018) 6018-6041.

A. Kunai, J. Harada, J. Izumi, H. Tachihara, K. Sasaki, Anodic oxidation of diphenyldiselenide in acetonitrile, Electrochim. Acta, 28 (1983) 1361-1366.

O. Niyomura, M. Cox, T. Wirth, Electrochemical Generation and Catalytic Use of Selenium Electrophiles, Synlett, 2 (2006) 251-254.

M. Tingoli, M. Tiecco, D. Chianelli, . Balducci, A. Temperini, Novel azido-phenylselenenylation of double bonds: Evidence for a free-radical process, J. Org. Chem., 56 (1991) 6809–6813.

D. S. Smith, J. Winnick, Y. Ding, L. A. Bottomley, Electrosynthesis of Alpha-keto Acetals, Electrochim. Acta, 43 (1998) 335-339.

M. Tingoli, M. Tiecco, L. Testaferri, R. Andrenacci, R. Balducci, Intramolecular nucleophilic deselenenylation reactions promoted by benzeneselenenyl triflate. stereospecific synthesis of vicinal amino alcohol precursors J. Org. Chem. 58 (1993) 6097.

B. I. Kharisov, Direct synthesis of metal complexes, Elsevier, Switzerland, 2018.

Fundamentals and applications of organic electrochemistry: synthesis, materials, devices, T. Fuchigami, M. Atobe, S. Inagi, Wiley, United Kingdom, Edition 2015.

E. Steckhan, Topics in Current Chemistry, Vol. 185, Springer-Verlag, Berlin, 1997, Chapter 3.

C. Gütz, B. Klöckner, S. R. Waldvogel, Electrochemical screening for electroorganic synthesis, Org. Process Res. Dev., 20 (2016) 26–32.

S. Torri, K. Uneyama, K. Handa, Research articleAbstract only A facile access to α-phenylselenenyl carbonyl compounds by electrochemical oxidation, Tetrahedron Lett., 21 (1980) 1863-1866.

. Mundil, . Sokolohorskyj, J. Hošek, J. Cvačka, I. Císařová, J. Kvíčala, J. Merna, Nickel and palladium complexes with fluorinated alkyl substituted α-diimine ligands for living controlled olefin polymerization, Polym. Chem., 9 (2018) 1234-1248.

L. M. Bouchet, J. E. Argüello, Photoinduced one-electron oxidation of aromatic selenides: effect of the structure on the reversible dimerization reaction, J. Org. Chem., 83 (2018), 5674–5680

Published
2018-12-17
How to Cite
Rouhollahi, A., Asghari, Z., & Movassagh, B. (2018). Analytical Methods: Electrochemical azido-selenenylation of some olefins by cyclic voltammetry and controlled-potential coulometry. Analytical Methods in Environmental Chemistry Journal, 1(01), 67-74. https://doi.org/10.24200/amecj.v1.i01.38
Section
Original Article