Analytical Method: Determination of famotidine drug using chemiluminescence method

Volume 7, Issue 01, Pages 65-75, March 2024 *** Field: Analytical Chemistry

  • Shatha Y. Al-Samarrai, Corresponding Author, Department of Chemistry, College of Science, Tikrit University, 34001, Tikrit, Iraq
Keywords: Famotidine, Chemiluminescence, Luminol, Hydrogen peroxide, Pharmaceutical drug

Abstract

This study involved the development of a novel, cost-effective, fast, and highly sensitive analytical technique for quantifying minimal amounts of the drug famotidine through chemiluminescence. The method is centred around the measurement of energy emitted as a result of the interaction between the drug and Luminol in an alkaline solution; this interaction generates an electronically excited intermediate state, releasing a portion of the system’s energy as photons. The method was sensitive for the analysis of famotidine. The linear calibration curve (LR) is obtained in the range 2-12 mg mL-1, with a high correlation coefficient (R2) of 0.9929. The molecular absorption coefficient  (ε) was calculated at 2621×104 L mol-1 cm-1. The method displayed excellent sensitivity with a Sandell’s sensitivity of 1.287×10-5 mg cm-2, the detection limit (LOD) was found to be 0.0314 mg mL-1, and the limit of quantification (LOQ) was 0.0952 mg mL-1. This study found that recovery was obtained at 104 - 96.5 %, and the relative standard deviation (RSD%) was below 1.981%. The results showed that the proposed technique has efficient recovery for measuring famotidine in pharmaceutical preparations.

References

M. S. Islam, M. M. Narurkar, Solubility, stability and ionization behavior of Famotidine, J. Pharm. Pharmacol. 45 (1993) 682-686. https://doi.org/10.1111/j.2042-7158.1993.tb07088.x

A. Adejare, Remington: The Science and Practice of Pharmacy, Twenty-third Edition, Elsevier Book, 2020. https://doi.org/10.1016/C2018-0-04991-9

J.E.F. Reynolds, martindale, the extra pharmacopoeia, 32nd ed., the pharmaceutical press, Massachusetts (1999) 810-812. https://www.pharmaceuticalpress.com/about/about-pharmaceutical-press/

T. O. Al- Khesraji, A. Y. Al-Hayawi, Five new taxa records for the macromycota of Iraq from Suliamaniya and Tikrit provinces (Iraq), Plant Arch., 19 (2019) 4067-4072. https://www.plantarchives.org/

A. Y. Al-Hayawi, M. H. Sh. Al Jubori, The inhibitory effect of garlic and onion root exudates on escherichia coli from urinary tract infection and molecular detection of hlyA virulence gene, Int. J. Drug Deliv. Technol., 10 (2020) 131-135. https://doi.org/10.25258/ijddt.10.1.18

P. Ravisankar, O. S. Sai Koushik, A. A Reddy, U. E Kumar, P. Sai Anvith, P. A. Pragna, Detailed analysis on acidity and ulcers in esophagus, gastric and duodenal ulcers and management, IOSR J. Dental Med. Sci., 15 (2016) 94-114. https://doi.org/10.9790/0853-1511094114

M. Vacher, F. I. Galván, B. W. Ding, S. Schramm, R. Berraud-Pache, P. Naumov, N. Ferré, Y. J. Liu, I. Navizet, D. Roca-Sanjuán, W. J. Baader, R. Lindh, Chemi- and bioluminescence of cyclic peroxides, Chem. Rev., 118 (2018) 6927–6974. https://doi.org/10.1021/acs.chemrev.7b00649

K. Gundermann, luminescence. Encyclopedia Britannica, June 29, 2023. https://www.britannica.com/science/luminescence.

M. A. Tzani, D. K. Gioftsidou, M. G. Kallitsakis, N. V. Pliatsios, N. P. Kalogiouri, P. A. Angaridis, I. N. Lykakis, M. A. Terzidis, Direct and indirect chemiluminescence: reactions, mechanisms and challenges, Molecules, 26 (24) (2021) 7664. https://doi.org/10.3390/molecules26247664

E. G. Brandão, S. R. W. Perdigão, B. F. Reis, A new flow cell design for chemiluminescence detection using an improved signal transduction network. Determination of hydrogen peroxide in pharmaceuticals, Microchem. J., 171 (2021) 106789. https://doi.org/10.1016/j.microc.2021.106789

S. N. A. Shah, J-M. Lin, Recent advances in chemiluminescence based on carbonaceous dots, Adv. Colloid Interface Sci., 241 (2017) 24-36. https://doi.org/10.1016/j.cis.2017.01.003

A. M. Helmenstine, What Is Chemiluminescence? ThoughtCo, New York, NY 10281, 2019. thoughtco.com/chemiluminescence-definition-4142622.

P. Gumułka, J. Żandarek, M. Dąbrowska, M. Starek, UPLC technique in pharmacy—An important tool of the modern analyst, Processes, 10 (2022) 2498. https://doi.org/10.3390/pr10122498

R. A. Zounr, M. Y. Khuhawar, T. M. J. Khuhawar, M. F. Lanjwani, M. Y. Khuhawar, Analysis of metformin, ranitidine and famotidine from pharmaceuticals and human serum, J. Chromatogr. Sci., 6 (2023) bmad047. https://doi.org/10.1093/chromsci/bmad047

K. M. Kelani, A. M. Aziz, M. A. Hegazy, L. A. Fattah, Determination of cimetidine, famotidine, and ranitidine hydrochloride in the presence of their sulfoxide derivatives in pure and dosage forms by high-performance thin-layer chromatography and scanning densitometry, J. AOAC Int., 85 (2002) 1015-1020. https://doi.org/10.1093/jaoac/85.5.1015

G. Z. Tsogas, D. L. Giokas, A. G. Vlessidis, N. P. Evmiridis, The effects of solvent preoxidation on inhibited chemiluminescence of pyrogallol oxidation in flow injection analysis and liquid chromatography, Anal. Chim. Acta, 565 (2006) 56-62. https://doi.org/10.1016/j.aca.2006.02.018

S. Elbaramawi, M. El-Sadek, M. Baraka, L. Abdel-Aziz, M. Sebaiy, Instrumental analysis of some anti-ulcer drugs in different matrices, Chem. Reports, 2 (2020) 156-172. https://doi.org/10.25082/CR.2020.01.005

J. Shamar, S. Abbas and Z. Abbas, Z. Analytical methods for determination of ketoprofen drug: A review, Ibn AL-Haitham J. Pure Appl. Sci., 35 (2022) 76–82. https://doi.org/10.30526/35.3.2842

E. F. Silva, P. R. B. Gomes, R. N. Fernandes, W. S. Lyra, Flow-injection spectrometric determination of sodium diclofenac in pharmaceutical formulations, J. Chil. Chem. Soc., 63 (2018) 3941-3946. http://dx.doi.org/10.4067/s0717-97072018000203941

R. P. Adhikari, S. N. Rahman, S. Lamichane, A. Bora, Overview of analytical methods for the determination of H2 receptor blockers: A review, J. Drug Deliv. Ther., 13 (2023) 137-144. http://dx.doi.org/10.22270/jddt.v13i10.6245

O. Z. Devi, K. Basavaiah, P. J. Ramesh, K. B. Vinay, Simple and sensitive UV spectrophotometric methods for determination of famotidine in tablet formulations, Farmacia, 59 (2011) 647-658. https://farmaciajournal.com/arhiva/20115/issue52011art05.html

M. Alamgir, M. Y. Khuhawar, S. Q. Memon, A. Hayat, R. A. Zounr, A. Chanar, HPLC determination of metformin, famotidine, and ranitidine by derivatization with benzoin from drugs and biological samples, Pharm. Anal. Acta, 8 (2017) 1-7 http://dx.doi.org/10.4172/2153-2435.1000546

A. M. K. Ahmed, A. I. Khaleel, S. T. Amine, Determination of ranitidine - HCl in pharmaceutical formulations by kinetic spectrophotometric and flow injection - activated chemiluminescence methods, Iraqi Nat. J. Chem., 24 (2006) 534-550. https://injchemistry.uobabylon.edu.iq/index.php/chem/article/view/633/580

T. Pérez-Ruiz, C. Martinez-Lozano, V. Tomás, E. Bravo, Direct determination of ranitidine and famotidine by CE in serum, urine, and pharmaceutical formulations, J. Pharm. Biomed. Anal., 30 (2002) 1055-1061. https://doi.org/10.1016/S0731-7085(02)00444-2

Z. Fu, W. Huang, G. Li, Y. Hu, A chemiluminescence reagent-free method for the determination of captopril in medicine and urine samples by using trivalent silver, J. Pharm. Anal., 7 (2017) 252-257. https://doi.org/10.1016/j.jpha.2017.05.005

C. Lau, X. Qin, J. Liang, J. Lu, Determination of cysteine in a pharmaceutical formulation by flow injection analysis with a chemiluminescence detector, Anal. Chim. Acta, 514 (2004) 45-49. https://doi.org/10.1016/j.aca.2004.01.007

L. Ma, W. J. Kang, X. D. Xu, L. M. Niu, H. M. Shi, S. Li, Flow-injection chemiluminescence determination of penicillin antibiotics in drugs and human urine using luminol Ag(III) complex system, J. Anal. Chem., 67 (2012) 219-225. https://doi.org/10.1134/S1061934812030070

Y. Huang, Z. Zhang, Binding study of a drug with bovine serum album using a combined technique of microdialysis with flow-injection chemiluminescent detection, J. Pharm. Biomed. Anal., 35 (2004) 1293-1299. https://doi.org/10.1016/j.jpba.2004.04.003

X. Xiong, X. Zhao, Y. Li, Z. Song, A fast and efficient chemiluminescence method for determination and pharmacokinetic study of paclitaxel in rat plasma, Curr. Pharm. Anal., 10 (2014) 246-254. https://doi.org/10.2174/1573412910666140716164950

J. A. Ocaña-González, M. Ramos-Payán, R. Fernández-Torres, M. V. Navarro, M. Á. Bello-López, Application of chemiluminescence in the analysis of wastewaters—A review, Talanta, 122 (2014) 214–222. https://doi.org/10.1016/j.talanta.2014.01.028

B. Khadro, B. D. Leca-Bouvier, F. Lagarde, F. Barbier, L. J. Blum, C. Martelet, L. Marcotte, M. Tabrizian, N. Jaffrezic-Renault, Chemiluminescence of luminol for the determination of cobalt(II) adsorbed on a chitosan membrane, Sensor Lett., 7 (2009) 833-838. https://doi.org/10.1166/sl.2009.1158

Y. Su, Y. N. Xie, X. D. Hou, Y. Lv, Recent advances in analytical applications of nanomaterials in liquid-phase chemiluminescence, Appl. Spectrosc. Rev., 49 (2014) 201-232. https://doi.org/10.1080/05704928.2013.819514

Z. Chang, X. Zheng, Highly sensitive electrogenerated chemiluminescence (ECL) method for famotidine with pre-anodizing technique to improve ECL reaction microenvironment at graphite electrode surface, J. Electroanal. Chem., 587 (2006) 161–168. https://doi.org/10.1016/j.jelechem.2005.11.006

Y-H. Tang, N-N. Wang, X-Y. Xiong, F-M. Xiong, S-J. Sun, A new sensitive flow-injection chemiluminescence method for the determination of H2-receptor antagonists, Luminescence, 22 (2007) 343–348. https://doi.org/ 10.1002/bio.969

S. Teimoori, An immobilization of aminopropyl trimethoxysilane-phenanthrene carbaldehyde on graphene oxide for toluene extraction and separation in water samples, Chemosphere, 316 (2023) 137800. https://doi.org/10.1016/j.chemosphere.2023.137800

M Arjomandi, A review: analytical methods for heavy metals determination in environment and human samples, Anal. Methods Environ. Chem. J., 2 (2019) 97-126. https://doi.org/10.24200/amecj.v2.i03.73

S. Teimoori, A.H. Hassani, M. Panahi, N. Mansouri, Rapid extraction of BTEX in water and milk samples based on functionalized multi-walled carbon nanotubes by dispersive homogenized-micro-solid phase extraction, Food Chem., 421 (2023) 136229. https://doi.org/10.1016/j.foodchem.2023.136229

S. Teimoori, A.H. Hassani, New extraction of toluene from water samples based on nano-carbon structure before determination by gas chromatography, Int. J. Environ. Sci. Technol., 20 (2023) 6589–6608. https://doi.org/10.1007/s13762-023-04906-9

Published
2024-03-28
How to Cite
Al-Samarrai, S. (2024). Analytical Method: Determination of famotidine drug using chemiluminescence method. Analytical Methods in Environmental Chemistry Journal, 7(01), 65-75. https://doi.org/10.24200/amecj.v7.i01.320
Section
Original Article