A review: Exploratory analysis of recent advancement in green analytical chemistry application

Volume 7, Issue 01, Pages 86-114, March 2024 *** Field: Analytical Chemistry

  • Deeksha Kumari Department of Pharmaceutical Analysis, Indo-Soviet Friendship College of Pharmacy, Ferozepur G.T. Road, Moga-142001, Punjab, India
  • Yunes M. M. A. Alsayadi, Corresponding Author, University Institute of Pharmaceutical Sciences, Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Punjab 140413
  • Navni Sharma University Institute of Pharmaceutical Sciences, Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Punjab 140413
Keywords: Analytical techniques, Supercritical Fluids, Ionic liquids, Extraction/Removal, Liquid Phase Extraction, Solid Phase Extraction

Abstract

It is always a concern to ensure personnel and environment safety in the field of chemistry which has caused to development of green analytical chemistry methods. Green chemistry aims to create an eco-friendly environment in laboratories by using various analytical methods/strategies to reduce the use of toxic solvents which are harmful to humans and the environment.  It is a way that protect the environment by using green solvents and methods. Green analytical chemistry is a rapid analytical technique that describes the separation, identification, and quantification of an analyte in drugs, environments, and humans. Various green methodologies such as automation, miniaturization, precipitations, and passivation are utilized in the recovery of solvents and reagents. Green analytical chemistry aims to create an eco-friendly environment in the laboratories by using various analytical methods/strategies to reduce the use of toxic solvents which are harmful to the environment/humans as well as to decrease the amount of waste generated. In this review, we explore different green solvents that can replace other toxic solvents used during extraction processes. In this review, the various extraction methods and analytical techniques used to analyze different components have been discussed.

References

P.T. Anastas, Green chemistry and the role of analytical methodology development, Crit. Rev. Anal. Chem., 29 (1999) 167–175. https://doi.org/10.1080/10408349891199356

P.T. Anastas, J.C. Warner, Green Chemistry, Theory and Practice. Oxford University Press, 135 pages, 1998. https://global.oup.com/academic/product/green-chemistry-9780198506980?cc=ca〈=en&

M.Tobiszewski, J. Namieśnik, Direct chromatographic methods in the context of green analytical chemistry, TrAC Trends Anal. Chem., 35 (2012) 67–73. https://doi.org/10.1016/j.trac.2012.02.006

L.H. Keith, L.U. Gron, J.L. Young, Green analytical methodologies, Chem. Rev., 107 (2007) 2695–2708. https://doi.org/10.1021/cr068359e

S. Garrigues, S. Armenta, M. Guardia, Green strategies for decontamination of analytical wastes, TrAC Trends Anal. Chem., 29 (2010) 592–601. https://doi.org/10.1016/j.trac.2010.03.009

M. Sajid, J. Płotka-Wasylka, Green analytical chemistry metrics: A review, Talanta, 238 (2022) 123046. https://doi.org/10.1016/j.talanta.2021.123046

D.L. Rocha, R.R.P. Rocha, An environmentally friendly flow-based procedure with photo-induced oxidation for the spectrophotometric determination of chloride in urine and waters, Microchem. J., 108 (2013)193–197. https://doi.org/10.1016/j.microc.2012.10.020

R.C. Gosselin, D.M. Adcock, S.M. Bates, J. Douxfils, E.J. Favaloro, I. Gouin-Thibault, C. Guillermo, International council for standardization in haematology (ICSH) recommendations for laboratory measurement of direct oral anticoagulants, J. Thromb. Haemost., 118 (2018) 437–450. https://doi.org/10.1055/s-0038-1627480

M. Castro Rodríguez, I. Rodriguez Garcia, R.N. Rodríguez Maecker, L. Pozo Morales, J.E. Oltra, A. Rosales Martinez, Cp2TiCl: An ideal reagent for green chemistry, Org. process Res. Dev., 21 (2017) 911-923. https://doi.org/10.1021/acs.oprd.7b00098

B.M. Trost, The atom economy–a search for synthetic efficiency, Sci., 254 (1991) 1471–1477. https://doi.org/10.1126/science.1962206

A. Gansäuer, M. Pierobon, H. Bluhm, Catalytic, highly regio- and chemoselective generation of radicals from epoxides: titanocene dichloride as an electron transfer catalyst in transition metal catalyzed radical reactions, Angew. Chem. Int. Ed., 37 (1998) 101–103. https://doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<101::AID-ANIE101>3.0.CO;2-W

A. Gałuszka, Z. Migaszewski, J. Namieśnik, The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices, TrAC Trends Anal. Chem., 50 (2013) 78–84. https://doi.org/10.1016/j.trac.2013.04.010

M. Vian, C. Breil, L. Vernes, E. Chaabani, F. Chemat, Green Solvents for sample preparation in analytical chemistry, Curr. Opin. Green Sustain. Chem., 5 (2017) 44–48. https://doi.org/10.1016/j.cogsc.2017.03.010

Q. Zhang, K.D.O. De Oliveira Vigier, S. Royer, F. Jérôme, Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev., 41 (2012) 7108–7146. https://doi.org/10.1039/c2cs35178a

J. Chen, Y. Li, X. Wang, W. Liu, Application of deep eutectic solvents in food analysis: A review, Molecules, 24 (2019) 4594. https://doi.org/10.3390/molecules24244594

E. Destandau, E. Lesellier, Chromatographic properties of ethanol/water mobile phases on silica based monolithic C18, Chromatographia, 68 (2008) 985–990. https://doi.org/10.1365/s10337-008-0819-8

C.J. Welch, T. Brkovic, W. Schafer, X. Gong, Performance to burn? re-evaluating the choice of acetonitrile as the platform solvent for analytical HPLC, Green Chem., 11 (2009) 1232. https://doi.org/10.1039/b906215g

V. Kienen, W.F. Costa, J.V. Visentainer, N.E. Souza, C.C. Oliveira, Development of a green chromatographic method for determination of fat-Soluble vitamins in food and pharmaceutical supplement, Talanta, 75 (2008) 141–146. https://doi.org/10.1016/j.talanta.2007.10.043

A.I. López-Lorente, F. Pena-Pereira, S. Pedersen-Bjergaard, V.G. Zuin, S.A. Ozkan, E. Psillakis, The ten principles of green sample preparation, TrAC Trends Anal. Chem., 148 (2022) 116530. https://doi.org/10.1016/j.trac.2022.116530

Y. Gu, F. Jérôme, Glycerol as a sustainable solvent for green chemistry, Green Chem., 12 (2010) 1127. https://doi.org/10.1039/c001628d

D.F. Aycock, Solvent applications of 2-Methyltetrahydrofuran in organometallic and biphasic reactions, Org. Process Res. Dev., 11 (2007) 156–159. https://doi.org/10.1021/op060155c

A. Breidbach, A greener, quick and comprehensive extraction approach for LC-MS of multiple mycotoxins, Toxins, 9 (2017) 91. https://doi.org/10.3390/toxins9030091

E. Shawky, S.S. Takla, H.M. Hammoda, F.A. Darwish, Evaluation of the influence of green extraction solvents on the cytotoxic activities of crinum (amaryllidaeae) alkaloid extracts Using In-Vitro-In-silico approach, J. Ethnopharmacol., 227 (2018) 139–149. https://doi.org/ 10.1016/j.jep.2018.08.040

S. Bi, S. Hu, Z. Zhou, M. Kong, Y. Liu, The green and stable dissolving system based on KOH/Urea for homogeneous chemical modification of chitosan, Int. J. Biol. Macromol., 120A (2018) 1103–1110. https://doi.org/10.1016/j.ijbiomac.2018.08.150

D. Prat, A. Wells, J. Hayler, H. Sneddon, C.R. McElroy, S. Abou-Shehada, P.J. Dunn, Green Chem., 18 (2016) 288-296. https://doi.org/10.1039/C5GC01008J

I. Pacheco-Fernández, V. Pino, Green solvents in analytical chemistry, Curr. Opin. Green Sustain. Chem., 18 (2019) 42–50. https://doi.org/10.1016/j.cogsc.2018.12.010

A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Novel solvent properties of choline chloride/urea mixtures, Chem. Commun., 2003, 70-71. https://doi.org/10.1039/B210714G

D. Yang, Y. Wang, J. Peng, C. Xun, Y. Yang, A green deep eutectic solvents microextraction coupled with acid-base induction for extraction of trace phenolic compounds in large volume water samples, Ecotoxicol. Environ. Saf., 178 (2019) 130–136. https://doi.org/10.1016/j.ecoenv.2019.04.021

P. Makoś, G. Boczkaj, Deep eutectic solvents based highly efficient extractive desulfurization of fuels-eco-friendly approach, J. Mol. Liq., 296 (2019) 111916. https://doi.org/10.1016/j.molliq.2019.111916

S.N. Pedro, M.G. Freire, C.S.R. Freire, Deep eutectic solvents comprising active pharmaceutical ingredients in the development of drug delivery systems, Expert Opin. Drug Deliv. 16 (2019) 497–506. https://doi.org/10.1080/17425247.2019.1604680

F. Aydin, E. Yilmaz, M. Soylak, Vortex assisted deep eutectic solvent (DES)-emulsification liquid-liquid microextraction of trace curcumin in food and herbal tea samples, Food Chem., 243 (2018) 442–447. https://doi.org/10.1016/j.foodchem.2017.09.154

S. Somsubsin, K. Seebunrueng, S. Boonchiangma, S.Srijaranai, A simple solvent based microextraction for high performance liquid chromatographic analysis of aflatoxins in rice samples, Talanta 176 (2018) 172–177. https://doi.org/10.1016/j.talanta.2017.08.028

T. Li, Y. Song, Z. Dong, Y. Shi, J. Fan, Hydrophobic deep eutectic solvents as extractants for the determination of bisphenols from food-contacted plastics by high performance liquid chromatography with fluorescence detection, J. Chromatogr. A, , 1621 (2020) 461087. https://doi.org/10.1016/j.chroma.2020.461087

G. Mastellone, I. Pacheco-Fernández, P. Rubiolo, V. Pino, C. Cagliero, Sustainable micro-scale extraction of bioactive phenolic compounds from vitis vinifera leaves with ionic liquid-based surfactants, Molecules, 25 (2020), 3072. https://doi.org/10.3390/molecules25133072

V.M. Paradiso, G. Squeo, A. Pasqualone, F. Caponio, C. Summo, An easy and green tool for olive oils labelling according to the contents of hydroxytyrosol and tyrosol derivatives: extraction with a natural deep eutectic solvent and direct spectrophotometric analysis, Food Chem., 291 (2019) 1–6. https://doi.org/10.1016/j.foodchem.2019.03.139

K. Fraige, R.D. Arrua, A.T. Sutton, C.S. Funari, Using natural deep eutectic solvents for the extraction of metabolites in byrsonima Intermedia leaves, J. Sep. Sci., 42 (2019) 591–597. https://doi.org/ 10.1002/jssc.201800905

W. Zhang, X. Liang, Headspace gas chromatography-mass spectrometry for volatile components analysis in ipomoea cairica (L.) sweet leaves: Natural deep eutectic solvents as green extraction and dilution matrix, Foods, 8 (2019) 205. https://doi.org/10.3390/foods8060205

X. Liu, N. Fu, Q. Zhang, S. Cai, Q. Wang, D. Han, B. Tang, Green tailoring with water of choline chloride deep eutectic solvents for the extraction of polyphenols from palm samples, J. Chromatogr. Sci., 57 (2019) 272–278. https://doi.org/10.1093/chromsci/bmy099

J. Ali, M. Tuzen, T.G. Kazi, Green and innovative technique develop for the determination of vanadium in different types of water and food samples by eutectic solvent extraction method, Food Chem., 306 (2020) 125638. https://doi.org/10.1016/j.foodchem.2019.125638

R. Ashouri, Dynamic and static removal of benzene from air based on task-specific ionic liquid coated on MWCNTs by sorbent tube-headspace solid-phase extraction procedure, Int. J. Environ. Sci. Technol., 18 (2021) 2377-2390. https://doi.org/10.1007/s13762-020-02995-4

N. Esmaeili, J. Rakhtshah, Ultrasound assisted-dispersive-modification solid-phase extraction using task-specific ionic liquid immobilized on multiwall carbon nanotubes for speciation and determination mercury in water samples, Microchem. J., 154 (2020) 104632. https://doi.org/10.1016/j.microc.2020.104632

D.A. Burns, E.W. Ciurczak, Handbook of Near-Infrared Analysis; 3rd edition, CRC Press, 834 pages, 2007. https://doi.org/10.1201/9781420007374

I.J.Wesley, N. Larsen, B.G. Osborne, J.H. Skerritt, Non-invasive monitoring of dough mixing by near infrared spectroscopy, J. Cereal Sci., 27 (1998) 61–69. https://doi.org/10.1006/jcrs.1997.0151

M. De la Guardia, S. Garrigues, Handbook of Green Analytical Chemistry; John Wiley & Sons, 2012. https://doi.org/10.1002/9781119940722

K.I. Hildrum, B.N. Nilsen, F. Westad, N.M. Wahlgren, In-line analysis of ground beef using a diode array near infrared instrument on a conveyor belt, J. Near Infrared Spectrosc., 12 (2004) 367–376. https://doi.org/10.1255/jnirs.445

T. Fearn, P.I. Maris, An application of box–Jenkins methodology to the control of gluten addition in a flour mill, Applied statistics, J. R. Stat. Soc.: Series C, 40 (1991) 477–484. https://academic.oup.com/jrsssc/issue/40/3

M. Blanco, M.A. Romero, Near-infrared libraries in the pharmaceutical industry: A solution for identity confirmation, Analyst, 126 (2001) 2212–2217. https://doi.org/10.1039/b105012p

Y.A. Woo, H.J. Kim, J. Cho, Identification of herbal medicines using pattern recognition techniques with near-infrared reflectance spectra, Microchem. J., 63 (1999) 61–70. https://doi.org/10.1006/mchj.1999.1768

S.J. Mazivila, R.A.E. Castro, At-line green synthesis monitoring of new pharmaceutical Co-crystals lamivudine: theophylline polymorph I and II, quantification of polymorph I among Its APIs using FT-IR sSpectroscopy and MCR-ALS, J. Pharm. Biomed. Anal., 169 (2019) 235–244. https://doi.org/ 10.1016/j.jpba.2019.03.014

B. Weldegebreal, M. Redi-Abshiro, B.S. Chandravanshi, Development of new analytical methods for the determination of caffeine content in aqueous solution of green coffee beans, Chem. Cent. J., 11 (2017) 126. https://doi.org/10.1186/s13065-017-0356-3

R.L. McCreery, Raman spectroscopy for chemical analysis; John Wiley & Sons, 448 pages, 2005. https://www.wiley.com

A. Hernanz, J.F. Ruiz‐López, J.M. Gavira‐Vallejo, S. Martin, E. Gavrilenko, Raman microscopy of prehistoric rock paintings from the Hoz de vicente, minglanilla, cuenca, Spain, J. Raman Spectrosc., 41 (2010) 1394–1399. https://doi.org/10.1002/jrs.2582

N. Welter, U. Schüssler, W. Kiefer, J. Raman Spect.: An international journal for original work in all aspects of Raman spectroscopy, Wiley, 2007. https://publications.rwth-aachen.de/record/35314

R. Legner, A. Wirtz, T. Koza, T. Tetzlaff, A. Nickisch‐Hartfiel, M. Jaeger, Application of green analytical chemistry to a green chemistry process: magnetic resonance and Raman spectroscopic process monitoring of continuous ethanolic fermentation, Biotechnol. BioEng., 116 (2019) 2874–2883. https://doi.org/10.1002/bit.27112

C.M. Molnar, C. Berghian-Grosan, D.A. Magdas, An optimized green preparation method for the successful application of Raman spectroscopy in honey studies, Talanta, 208 (2020) 120432. https://doi.org/10.1016/j.talanta.2019.120432

P.M. Nowak, R. Wietecha-Posłuszny, J. Pawliszyn, White analytical chemistry: An approach to reconcile the principles of green analytical chemistry and functionality, TrAC Trends Anal. Chem., 138 (2021) 116223. https://doi.org/10.1016/j.trac.2021.116223

C. Eliasson, N.A. Macleod, P. Matousek, Noninvasive detection of concealed liquid explosives using Raman spectroscopy, Anal. Chem., 79 (2007) 8185–8189. https://doi.org/10.1021/ac071383n

C. Eliasson, N.A. Macleod, P. Matousek, Non-Invasive detection of cocaine dissolved in beverages using displaced Raman spectroscopy, Anal. Chim. Acta, 607 (2008) 50–53. https://doi.org/10.1016/j.aca.2007.11.023

M. Kim, H. Chung, Y. Woo, M.S.A. Kemper, New non-invasive, quantitative Raman technique for the determination of an active ingredient in pharmaceutical liquids by direct measurement through a plastic bottle, Anal. Chim. Acta, 587 (2007) 200–207. https://doi.org/10.1016/j.aca.2007.01.062

A. Ncube, S. Mtetwa, M. Bukhari, G. Fiorentino, R. Passaro, Circular economy and green chemistry: The need for radical innovative approaches in the design for new products, Energies J., 16 (2023) 1752. https://doi.org/10.3390/en16041752

C. Eliasson, N.A. Macleod, L.C. Jayes, Non-Invasive quantitative assessment of the content of pharmaceutical capsules using transmission Raman spectroscopy, J. Pharm. Biomed. Anal., 47 (2008) 221–229. https://doi.org/10.1016/j.jpba.2008.01.013

A. Nordon, A. Mills, R.T. Burn, F.M. Cusick, D. Littlejohn, Comparison of non-invasive NIR and Raman spectrometries for determination of alcohol content of spirits, Anal. Chim. Acta, 548 (2005) 148–158. https://doi.org/10.1016/j.aca.2005.05.067

A.F. Zarandi, An immobilization of 2-(Aminomethyl) thiazole on multi-walled carbon nanotubes used for rapid extraction of manganese ions in hepatic patients, J. Pharm. Biomed. Anal.,240 (2024) 115941. https://doi.org/10.1016/j.jpba.2023.115941

M.M. Asl, Functionalized graphene oxide with bismuth and titanium oxide nanoparticles for efficiently removing formaldehyde from the air by photocatalytic degradation–adsorption process, J. Anal. Test., 7 (2023) 444-458. https://doi.org/10.1007/s41664-023-00272-0

E. Felici, C. Casado, C.C. Wang, J. Raba, M.R. Gomez, A green alternative method for analysis of ivermectin and moxidectin in environmental water samples using automatized preconcentration previous MEEKC, Electrophoresis, 37 (2016) 2977–2985. https://doi.org/10.1002/elps.201600303

M.R. Abukhadra, A. Adlii, B.M. Bakry, Green fabrication of bentonite/chitosan@cobalt oxide composite (BE/CH@Co) of enhanced adsorption and advanced oxidation removal of congo red dye and Cr (VI) from water, Int. J. Biol. Macromol., 126 (2019) 402–413. https://doi.org/10.1016/j.ijbiomac.2018.12.225

M.J. Nozal, J.L. Bernal, J.J. Jiménez, M.T. Martín, J. Bernal, Determination of azolic fungicides in wine by solid-phase extraction and high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry, J. Chromatogr. A, 1076 (2005) 90–96. https://doi.org/10.1016/j.chroma.2005.04.044

M. Yuan, S. Tong, S. Zhao, C.Q. Jia, Adsorption of polycyclic aromatic hydrocarbons from water using petroleum coke-derived porous carbon, J. Hazard. Mater, 181 (2010) 1115–1120. https://doi.org/ 10.1016/j.jhazmat.2010.05.130

L.F. Melo, C.H. Collins, I.C. Jardim, High-performance liquid chromatographic determination of pesticides in tomatoes using laboratory-made NH2 and C18 solid-phase extraction materials, J. Chromatogr. A, 1073 (2005) 75–81. https://doi.org/10.1016/j.chroma.2004.09.043

M. Suárez, M.P. Romero, A. Macià, R.M. Valls, S. Fernández, Improved method for identifying and quantifying olive oil phenolic compounds and their metabolites in human plasma by microelution solid-phase extraction plate and liquid chromatography-tandem mass spectrometry, J. Chromatogr. B, Analyt. Technol. Biomed. Life Sci., 877 (2009) 4097–4106. https://doi.org/10.1016/j.jchromb.2009.10.025

S. Abuin, R. Codony, R. Compañó, M. Granados, M.D. Prat, Analysis of macrolide antibiotics in river water by solid-phase extraction and liquid chromatography-mass spectrometry, J. Chromatogr. A, 1114 (2006) 73–81. https://doi.org/10.1016/j.chroma.2006.02.032

M.A. Andrade, F.M. Lanças, Determination of ochratoxin A in wine by packed in-tube solid phase microextraction followed by high performance liquid chromatography coupled to tandem mass spectrometry, J. Chromatogr. A, 1493 (2017) 41–48. https://doi.org/10.1016/j.chroma.2017.02.053

Y. M. M. A. Alsayadi, S. Arora, A review: Total vaporization solid-phase microextraction procedure in different matrixes, Anal. Methods Environ. Chem. J., 5 (2022) 80–102. https://doi.org/10.24200/amecj.v5.i03.190

G. Merola, S. Gentili, F. Tagliaro, T. Macchia, Determination of different recreational drugs in hair by HS-SPME and GC/MS, Anal. Bioanal. Chem., 397 (2010) 2987–2995. https://doi.org/10.1007/s00216-010-3882-6

R.L. Schacker, D.F. Moritz, M.S. Caro, L.A. Madureira, A.N. Dias, Study of viability of solid-phase microextraction, in vivo, in the extraction of microbial volatile organic compounds associated to the pigment production process by the Monascus fungus, in submerged fermentation, J. Braz. Chem. Soc., 28 (2017) 1113-1122. https://dx.doi.org/10.21577/0103-5053.20160269

F. Pena-Pereira, I. Lavilla, C. Bendicho, Miniaturized preconcentration methods based on liquid–liquid extraction and their application in inorganic ultratrace analysis and speciation: A review, Spectrochim. Acta B, 64 (2009) 1–15. https://doi.org/10.1016/j.sab.2008.10.042

M. Saraji, H. Ghambari, Comparison of three different dispersive liquid-liquid microextraction modes performed on their most usual configurations for the extraction of phenolic, neutral aromatic, and amino compounds from waters, J. Sep. Sci., 41 (2018) 3275–3284. https://doi.org/10.1002/jssc.201800133

K.E. Rasmussen, S. Pedersen-Bjergaard, M. Krogh, H.G. Ugland, T. Grønhaug, Development of a simple In-vial liquid-phase microextraction device for drug analysis compatible with capillary gas chromatography, capillary electrophoresis and high-performance liquid chromatography, J. Chromatogr. A, 873 (2000) 3–11. https://doi.org/10.1016/s0021-9673(99)01163-2

M.Rezaee, Y. Assadi, M.R. Milani Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, Determination of organic compounds in water using dispersive liquid-liquid microextraction, J. Chromatogr. A, 1116 (2006) 1–9. https://doi.org/10.1016/j.chroma.2006.03.007

M. Ramos Payán, M.A. Bello López, R. Fernández-Torres, Application of hollow fiber-based liquid-phase microextraction (HF-LPME) for the determination of acidic pharmaceuticals in wastewaters, Talanta, 82 (2010) 854–858. https://doi.org/10.1016/j.talanta.2010.05.022

I. Pacheco-Fernández, V. Pino, J.H. Ayala, A.M. Afonso, Guanidinium ionic liquid-based surfactants as low cytotoxic extractants: analytical performance in an in-situ dispersive liquid-liquid microextraction method for determining personal care products, J. Chromatogr. A, 1559 (2018) 102–111. https://doi.org/10.1016/j.chroma.2017.04.061

R. Shaikh, T.G. Kazi, H.I. Afridi, A. Akhtar, J.A. Baig, An environmental friendly enrichment method for microextraction of cadmium and lead in groundwater samples: impact on biological sample of children, Chemosphere, 237 (2019) 124444. https://doi.org/ 10.1016/j.chemosphere.2019.124444

A.Santana-Mayor, B. Socas-Rodríguez, R. Rodríguez-Ramos, M.A. Rodríguez-Delgado, A green and simple procedure based on deep eutectic solvents for the extraction of phthalates from beverages, Food Chem., 312 (2020) 125798. https://doi.org/10.1016/j.foodchem.2019.125798

H. Shirkhanloo, A. Khaligh, H.Z. Mousavi, A. Rashidi, Ultrasound assisted-dispersive-ionic liquid-micro-solid phase extraction based on carboxyl-functionalized nanoporous graphene for speciation and determination of trace inorganic and organic mercury species in water and caprine blood samples, Microchem. J. 130 (2017) 245–254. https://doi.org/10.1016/j.microc.2016.09.012

H.Shirkhanloo, M.Ghazaghi, H.Z. Mousavi, Cadmium determination in human biological samples based on trioctylmethyl ammonium thiosalicylate as a task-specific ionic liquid by dispersive liquid–liquid microextraction method, J. Mol. Liq., 218 (2016) 478–483. https://doi.org/ 10.1016/j.molliq.2016.02.035

A. Faghihi-Zarandi, H. Shirkhanloo, C.A. Jamshidzadeh, New method for removal of hazardous toluene vapor from air based on ionic liquid-phase adsorbent, Int. J. Environ. Sci. Technol., 16 (2019) 2797–2808. https://doi.org/10.1007/s13762-018-1975-5

S. Teimoori, H. Shirkhanloo, A.H. Hassani, M. Panahi, N. Mansouri, An immobilization of aminopropyl trimethoxysilane-phenanthrene carbaldehyde on graphene oxide for toluene extraction and separation in water samples, Chemosphere, 316 (2023) 137800. https://doi.org/10.1016/j.chemosphere.2023.137800

N. Esmaeili, J. Rakhtshah, E. Kolvari, H. Shirkhanloo, Ultrasound assisted-dispersive-modification solid-phase extraction using task-specific ionic liquid immobilized on multiwall carbon nanotubes for speciation and determination mercury in water samples, Microchem. J., 154 (2020) 104632. https://doi.org/10.1016/j.microc.2020.104632

K. Shrivas, H.F. Wu, A rapid, sensitive and effective quantitative method for simultaneous determination of cationic surfactant mixtures from river and municipal wastewater by direct combination of single-drop microextraction with AP-MALDI mass spectrometry, J. Mass Spectrom., 42 (2007) 1637–1644. https://doi.org/10.1002/jms.1266

A.L. Theis, A.J. Waldack, S.M. Hansen, M.A. Jeannot, Headspace solvent microextraction, Anal. Chem., 73 (2001) 5651–5654. https://doi.org/10.1021/ac015569c

M. Ma, F.F. Cantwell, Solvent microextraction with simultaneous back-extraction for sample cleanup and preconcentration: preconcentration into a single microdrop, Anal. Chem., 71 (1999) 388–393. https://doi.org/10.1021/ac9805899

J. Wang, Z. Du, W. Yu, S. Qu, Detection of seven pesticides in cucumbers using hollow fibre-based liquid-phase microextraction and ultra-high pressure liquid chromatography coupled to tandem mass spectrometry, J. Chromatogr. A, 1247 (2012) 10–17. https://doi.org/10.1016/j.chroma.2012.05.040

N. Arroyo-Manzanares, L. Gámiz-Gracia, A.M. García-Campaña, Determination of ochratoxin A in wines by capillary liquid chromatography with laser induced fluorescence detection using dispersive liquid-liquid microextraction, Food Chem., 135 (2012) 368–372. https://doi.org/ 10.1016/j.foodchem.2012.05.009

M.A. Farajzadeh, M.R.A. Mogaddam, H. Ghorbanpour, Development of a new microextraction method based on elevated temperature dispersive liquid–liquid microextraction for determination of triazole pesticides residues in honey by gas chromatography-nitrogen phosphorus detection. J. Chromatogr. A, 1347 (2014) 8–16. https://doi.org/10.1016/j.chroma.2014.04.067

X. Xu, F. Liang, J. Shi, X. Zhao, Z. Liu, L. Wu, Y. Song, H. Zhang, Z. Wang, Determination of hormones in milk by hollow fiber-Based stirring extraction bar liquid-liquid microextraction gas chromatography mass spectrometry, Anal. Chim. Acta, 790 (2013) 39–46. https://doi.org/10.1016/j.aca.2013.06.035

L.S. De Jager, A.R. Andrews, Development of a screening method for cocaine and cocaine metabolites in urine using solvent microextraction in conjunction with gas chromatography, J. Chromatogr. A, 911 (2001) 97–105. https://doi.org/10.1016/s0021-9673(00)01256-5

L. De Jager, A.R.J. Andrews, Development of a screening method for cocaine and cocaine metabolites in saliva using hollow fiber membrane solvent microextraction, Anal. Chim. Acta, 458 (2002) 311–320. https://doi.org/10.1016/S0003-2670(02)00063-6

B. Mostafavi, A. Feizbakhsh, E. Konoz, H. Faraji, Hydrophobic deep eutectic solvent based on centrifugation-free dispersive liquid–liquid microextraction for speciation of selenium in aqueous samples: one step closer to green analytical chemistry, Microchem. J., 148 (2019) 582–590. https://doi.org/10.1016/j.microc.2019.05.021

J Rakhtshah, Simultaneously speciation and determination of manganese (II) and (VII) ions in water, food, and vegetable samples based on immobilization of N-acetylcysteine on multi-walled carbon nanotubes, Food Chem., 389 (2022) 133124. https://doi.org/10.1016/j.foodchem.2022.133124

J. Ali, M. Tuzen, D. Citak, O.D. Uluozlu, Separation and preconcentration of trivalent chromium in environmental waters by using deep eutectic solvent with ultrasound-assisted based dispersive liquid-liquid microextraction method, J. Mol. Liq., 291 (2019) 111299. https://doi.org/10.1016/j.molliq.2019.111299

A. Safavi, R. Ahmadi, A.M. Ramezani, Vortex-assisted liquid-liquid microextraction based on hydrophobic deep eutectic solvent for determination of malondialdehyde and formaldehyde by HPLC-UV approach, Microchem. J., 143 (2018) 166–174. https://doi.org/10.1016/j.microc.2018.07.036

R. Malaei, A.M. Ramezani, G. Absalan, Analysis of malondialdehyde in human plasma samples through derivatization with 2,4-Dinitrophenylhydrazine by ultrasound-assisted dispersive liquid–liquid microextraction-GC-FID approach, J. Chromatogr. B, 1089 (2018) 60–69. https://doi.org/ 10.1016/j.jchromb.2018.05.001

A.D. Sánchez‐Camargo, On-Line coupling of supercritical fluid extraction and chromatographic techniques, J. Sep. Sci., 40 (2017) 213–227. https://doi.org/ 10.1002/jssc.201601040

A. Dispas, H. Jambo, S. André, E. Tyteca, P. Hubert, Supercritical fluid chromatography: A promising alternative to current bioanalytical techniques, Bioanalysis, 10 (2018) 107–124. https://doi.org/10.4155/bio-2017-0211

M. Antunes-Ricardo, T. García-Cayuela, J.A. Mendiola, E. Ibañez, J.A. Gutiérrez-Uribe, M.P. Cano, D. Guajardo-Flores, Supercritical CO2 enzyme hydrolysis as a pretreatment for the release of isorhamnetin conjugates from opuntia Ficus-Indica (L.) mill, J. Supercrit. Fluids, 141 (2018) 21–28. https://doi.org/10.1016/j.supflu.2017.11.030

N. Maljurić, B.Otašević, J. Golubović, A new strategy for development of eco-friendly RP-HPLC method using corona charged aerosol detector and its application for simultaneous analysis of risperidone and its related impurities, Microchem. J., 153 (2020) 104394. https://doi.org/10.1016/j.microc.2019.104394

B. Ma, R. Wang, H. Ni, K.Wang, Experimental study on harmless disposal of waste oil based mud using supercritical carbon dioxide extraction, Fuel, 252 (2019) 722–729. https://doi.org/10.1016/j.fuel.2019.04.111

R.N. Lima, A.D.C. Santos, A.S. Ribeiro, L. Cardozo-Filho, Selective amides extraction and biological activity from piper hispidum leaves using the supercritical extraction, J. Supercrit. Fluids, 157 (2020) 104712. https://doi.org/10.1016/j.supflu.2019.104712

M. L. Cádiz-Gurrea, J. Lozano-Sánchez, A. Fernández-Ochoa, A. Segura-Carretero, Enhancing the yield of bioactive compounds from sclerocarya birrea bark by green extraction approaches, Molecules, 24 (2019) 966. https://doi.org/10.3390/molecules24050966

T. Lefebvre, A. Talbi, S. Atwi-Ghaddar, E. Destandau, E. Lesellier, Development of an analytical method for chlorophyll pigments separation by reversed-phase supercritical fluid chromatography, J. Chromatogr. A, 1612 (2020) 460643. https://doi.org/10.1016/j.chroma.2019.460643

D. Yuvali, I. Narin, M. Soylak, E. Yilmaz, Green synthesis of magnetic carbon nanodot/graphene oxide hybrid material (Fe3O4@C-Nanodot@GO) for magnetic solid phase extraction of ibuprofen in human blood samples prior to HPLC-DAD determination, J. Pharm. Biomed. Anal., 179 (2020) 113001. https://doi.org/10.1016/j.jpba.2019.113001

B.W. Cue, J. Zhang, Green process chemistry in the pharmaceutical industry, Green Chem. Lett. Rev., 2 (2009) 193–211. https://doi.org/10.1080/17518250903258150

M. Khanmohammadi, R. Nasiri, K. Ghasemi, S. Samani, A.B. Bagheri Garmarudi, Diagnosis of basal cell carcinoma by infrared spectroscopy of whole blood samples applying soft independent modeling class analogy, J. Cancer Res. Clin. Oncol., 133 (2007) 1001–1010. https://doi.org/10.1007/s00432-007-0286-x

M. Jang, Application of portable X-Ray fluorescence (pXRF) for heavy metal analysis of soils in crop fields near Abandoned mine sites, Environ. Geochem. Health, 32 (2010) 207–216. https://doi.org/10.1007/s10653-009-9276-z

R.V. Bordiwala, Green synthesis and applications of metal nanoparticles, A review, Results Chem., 5 (2023)100832. https://doi.org/10.1016/j.rechem.2023.100832

A. Pinheiro, J.B. de Andrade, Development, validation and application of a SDME/GC-FID methodology for the multiresidue determination of organophosphate and pyrethroid pesticides in water, Talanta, 79 (2009) 1354–1359. https://doi.org/10.1016/j.talanta.2009.06.002

S. Winters, R.M. Gendreau, Fourier transform infrared spectroscopy of protein adsorption from whole blood: II. Ex Vivo sheep studies, Appl. Spectrosc., 36 (1982) 404–409. https://doi.org/10.1366/0003702824639592

R.M. Gendreau, S. Winters, R.L. Leininger, Fourier transform infrared spectroscopy of protein adsorption from whole blood: Ex vivo dog studies, Appl. Spectrosc., 35 (1981) 353–357. https://doi.org/10.1366/0003702814732562c

M.M. Eskandari, B. Kalantari, Dispersive liquid-liquid microextraction based on task-specific ionic liquids for determination and speciation of chromium in human blood, J. Anal. Chem., 70 (2015) 1448-1455. https://doi.org/10.1134/S1061934815120072

H.Z. Mousavi, Chromium speciation in human blood samples based on acetyl cysteine by dispersive liquid–liquid biomicroextraction and in-vitro evaluation of acetyl cysteine/cysteine for decreasing of hexavalent chromium concentration, J. Pharm. Biomed. Anal., 118 (2016) 1-8. https://doi.org/10.1016/j.jpba.2015.10.018

M.K. Abbasabadi, Speciation of cadmium in human blood samples based on Fe3O4-supported naphthalene-1-thiol-functionalized graphene oxide nanocomposite by ultrasound-assisted dispersive magnetic micro solid phase extraction, J. Pharm. Biomed. Anal., 189 (2020) 113455. https://doi.org/10.1016/j.jpba.2020.113455

Z Karamzadeh, A novel biostructure sorbent based on CysSB/MetSB@ MWCNTs for separation of nickel and cobalt in biological samples by ultrasound assisted-dispersive ionic liquid-suspension solid phase micro extraction, J. Pharm. Biomed. Anal., 172 (2019) 285-294. https://doi.org/10.1016/j.jpba.2019.05.003

S. Davari, A lead analysis based on amine functionalized bimodal mesoporous silica nanoparticles in human biological samples by ultrasound assisted-ionic liquid trap-micro solid phase extraction, J. Pharm. Biomed. Anal., 157 ( 2018) 1-9. https://doi.org/10.1016/j.jpba.2018.05.004

J. Sunarso, S. Ismadji, Decontamination of hazardous substances from solid matrices and liquids using supercritical fluids extraction: A review, J. Hazard. Mater., 161 (2009) 1–20. https://doi.org/10.1016/j.jhazmat.2008.03.069

C. Walgraeve, K. Demeestere, J. Dewulf, R. Zimmermann, H. Van Langenhove, Oxygenated Polycyclic aromatic hydrocarbons in atmospheric particulate matter: molecular characterization andoccurrence, Atmos.Environ., 44(2010) 1831–1846. https://doi.org/10.1016/j.atmosenv.2009.12.004

M. B. H. Abadi Air pollution control: The evaluation of TerphApm@ MWCNTs as a novel heterogeneous sorbent for benzene removal from air by solid phase gas extraction, Arab. J. Chem., 13 (2020) 1741-1751. https://doi.org/10.1016/j.arabjc.2018.01.011

M. Osanloo, M. Ghazaghi, H. Hassani Validation of a new and cost-effective method for mercury vapor removal based on silver nanoparticles coating on micro glassy balls, Atm. Pollut. Res., 8 (2017) 359-365. https://doi.org/10.1016/j.apr.2016.10.004

M. Osanloo, Nobel method for toluene removal from air based on ionic liquid modified nano-graphen, Int. J. Occup. Hyg., 6 (2014) 1-5. https://ijoh.tums.ac.ir/index.php/ijoh/article/view/89

H. Zavvar Mousavi, Determination of Hg in water and wastewater samples by CV-AAS following on-line preconcentration with silver trap, J. Anal. Chem., 65 (2010) 935-939. https://doi.org/10.1134/S106193481009008X

A. Khaligh, F. Golbabaei, Z. Sadeghi, A. Vahid, A. Rashidi, On-line micro column preconcentration system based on amino bimodal mesoporous silica nanoparticles as a novel adsorbent for removal and speciation of chromium (III, VI) in environmental samples, J. Environ. Health Sci. Eng., 13 (2015) 1-12. https://doi.org/10.1186/s40201-015-0205-z

. Hosseini, A.F. Zarandi Nanographene oxide modified phenyl methanethiol nanomagnetic composite for rapid separation of aluminum in wastewaters, foods, and vegetable samples by microwave dispersive magnetic micro solid-phase extraction, Food Chem., 347 ( 2021)129042. https://doi.org/10.1016/j.foodchem.2021.129042

J. Rakhtshah, A rapid extraction of toxic styrene from water and wastewater samples based on hydroxyethyl methylimidazolium tetrafluoroborate immobilized on MWCNTs by ultra-assisted dispersive cyclic conjugation-micro-solid phase extraction, Microchem. J., 170 ( 2021) 106759. https://doi.org/10.1016/j.microc.2021.106759

H.H. Luo Jun, X. Yang, J. Hu, Y. Liao, Method for detecting perfluorinated compounds by using solid phase microextraction with liquid phase chromatography-tandem mass spectrum, Patent CN105974041A,2016. https://patents.google.com/patent/CN105974041A/en?oq=CN105974041A

T.D. Li Yanfei, L. Hong, L. Genrong, Method for detecting hogwash oil by combination of headspace solid-phase microextraction and gas chromatography mass spectrometry, CN Patents CN101852783A,2010. https://patents.google.com/patent/CN101852783A/en?oq=+CN101852783A

X. Shaoping, C. Xiaoling. Method for analyzing volatile components of coffee beans using automated solid-phase microextraction technology, CN Patent CN108693290A, 2018. https://patents.google.com/patent/CN108693290A/en?oq=CN108693290A

Published
2024-03-30
How to Cite
Kumari, D., Alsayadi, Y., & Sharma, N. (2024). A review: Exploratory analysis of recent advancement in green analytical chemistry application. Analytical Methods in Environmental Chemistry Journal, 7(01), 86-114. https://doi.org/10.24200/amecj.v7.i01.279
Section
Review Article