In-vitro evaluation of photoprotection, cytotoxicity and phototoxicity of aqueous extracts of Cuscuta campestris and Rosa damascene by MTT method and UV spectroscopy analysis

Volume 5, Issue 04, Pages 55-65, Dec 2022 *** Field: Spectroscopy Analysis

  • Payam Khazaeli Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran and Pharmaceutical sciences and cosmetic products research center, Kerman University of Medical Sciences, Kerman, Iran
  • Atefeh Ameri Pharmaceutical sciences and cosmetic products research center, Kerman University of Medical Sciences, Kerman, Iran
  • Mitra Mehrabani Herbal
  • Morteza Barazvan Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran and Students Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
  • Marzieh Sajadi ‎Bami Pharmaceutics Research Center, Institute of Neuropharmacology, KUMS, Iran
  • Behzad Behnam, Corresponding Author, Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
Keywords: Cuscuta campestris, UV-visible spectrophotometer, Rosa damascene, Sun protective factor, Phototoxicity

Abstract

Applying sunscreen is essential for protecting the skin from UV’s acute and chronic effects. Some of these products on the market display side effects and are expensive. There is a great demand for effective, cheap, safe, and herbal sunscreens with a wide range of sun protection activities. This study aimed to evaluate the photoprotection, cytotoxicity, and phototoxicity of aqueous extracts of Cuscuta campestris (CC-AE) and Rosa damascena (RD-AE). The maceration method prepared the CC-AE and RD-AE from the aerial branch. In-vitro photoprotection was evaluated by determining the sun protective factor (SPF) of CC-AE and RD-AE by a UV-visible spectrophotometer. The cytotoxicity and phototoxicity studies were assessed using the MTT assay on 3T3 cells. In the final, the PIF (Photo Inhibitor Factor) was calculated. The SPF values of CC-AE and RD-AE were found at 11.10±0.05 and 1.36±0.04, respectively, at the concentration of 0.2 mg mL-1. The half maximal effective concentration (EC50) of CC-AE and RD-AE was obtained at 35.05±0.91 µg mL-1 and 40.7±0.87 µg mL-1, respectively. The phototoxicity analysis showed that CC-AE and RD-AE had low PIF values and were considered probable phototoxic. Overall, regarding SPF and PIFs values, the anti-inflammatory and antioxidant properties, can be evaluated for further pharmaceutical formulations.

References

S.R. Varma, T.O. Sivaprakasam, I. Arumugam, N. Dilip, M. Raghuraman, K. Pavan, M. Rafiq, R. Paramesh, In vitro anti-inflammatory and skin protective properties of Virgin coconut oil, J. Tradit. Complement. Med., 9 (2019) 5-14. https://doi.org/10.1016/j.jtcme.2017.06.012.

K.C. Rangel, L.Z. Villela, K.d.C. Pereira, P. Colepicolo, H.M. Debonsi, L.R. Gaspar, Assessment of the photoprotective potential and toxicity of Antarctic red macroalgae extracts from Curdiea racovitzae and Iridaea cordata for cosmetic use, Algal Res., 50 (2020) 101984. https://doi.org/10.1016/j.algal.2020.101984.

G. Bhandari , S. Baurai, Assessment of in vitro sun protection factor of plant extracts by ultraviolet spectroscopy method, Univ. J. Phytochem. Ayurvedic Heights, 2 (2020) 20-25. https://doi.org/10.51129/ujpah-2020-29-2(3).

M. Majeed, S. Majeed, R. Jain, L. Mundkur, H.R. Rajalakshmi, P. Lad, P. Neupane, A randomized study to determine the sun protection factor of natural pterostilbene from pterocarpus marsupium, Cosmetics, 7 (2020) 16. https://doi.org/10.3390/cosmetics7010016.

D. Bhattacharjee, S. Preethi, A.B. Patil, V. Jain, A comparison of natural and synthetic sunscreen agents: a review, Int. J. Pharm. Sci. Res., 13 (2021) 3494-3505. https://doi.org/10.31838/ijpr/2021.13.01.524.

T. Sharma, V. Tyagi, M. Bansal, Determination of sun protection factor of vegetable and fruit extracts using UV–Visible spectroscopy: A green approach, Sustain. Chem. Pharm., 18 (2020) 100347. https://doi.org/10.1016/j.scp.2020.100347.

A.C. Da Silva, J.P. Paiva, R.R. Diniz, V.M. Dos Anjos, A.B.S. Silva, A.V. Pinto, E.P. Dos Santos, A.C. Leitão, L.M. Cabral, C.R. Rodrigues, Photoprotection assessment of olive (Olea europaea L.) leaves extract standardized to oleuropein: In vitro and in silico approach for improved sunscreens, J. Photochem. Photobiol. B, 193 (2019) 162-171. https://doi.org/10.1016/j.jphotobiol.2019.03.003.

M. Radice, S. Manfredini, P. Ziosi, V. Dissette, P. Buso, A. Fallacara, S. Vertuani, Herbal extracts, lichens and biomolecules as natural photo-protection alternatives to synthetic UV filters. A systematic review, Fitoterapia, 114 (2016) 144-162. https://doi.org/10.1016/j.fitote.2016.09.003.

B. Prasanth, A. Soman, J. Jobin, P.S. Narayanan, A.P. John, Plants and phytoconstituents having sunscreen activity, World J. Curr. Med. Pharm. Res., 2 (2020) 14-20. https://doi.org/10.37022/WJCMPR.2020.02019.

F. Merlin, W. Ratnasooriya, R. Pathirana, In vitro investigation of sunscreen activity and evaluation of phytochemical profile of methanolic leaf extract of Rauvolfia tetraphylla, J. Pharmacogn. Phytochem., 9 (2020) 2063-2067. https://www.phytojournal.com/

A.D. Permana, R.N. Utami, A.J. Courtenay, M.A. Manggau, R.F. Donnelly, L. Rahman, Phytosomal nanocarriers as platforms for improved delivery of natural antioxidant and photoprotective compounds in propolis: An approach for enhanced both dissolution behaviour in biorelevant media and skin retention profiles, J. Photochem. Photobiol., 205 (2020) 111846. https://doi.org/10.1016/j.jphotobiol.2020.111846.

M. Hupel, N. Poupart, E.A. Gall, Development of a new in vitro method to evaluate the photoprotective sunscreen activity of plant extracts against high UV-B radiation, Talanta, 86 (2011) 362-371. https://doi.org/10.1016/j.talanta.2011.09.029.

M.H. Boskabady, M.N. Shafei, Z. Saberi, S. Amini, Pharmacological effects of Rosa damascena, Iran. J. Basic Med. Sci., 14 (2011) 295. https://ijbms.mums.ac.ir/

M. Mahboubi, Rosa damascena as holy ancient herb with novel applications, J. Tradit. Complement. Med., 6 (2016) 10-16. https://doi.org/10.1016/j.jtcme.2015.09.005.

N. Kumar, B. Singh, V.K. Kaul, Flavonoids from Rosa damascena Mill, Nat. Prod. Commun., 1 (2006) 1934578X0600100805. https://doi.org/10.1177/1934578X0600100805.

N.G. Baydar , H. Baydar, Phenolic compounds, antiradical activity and antioxidant capacity of oil-bearing rose (Rosa damascena Mill.) extracts, Ind. Crops Prod., 41 (2013) 375-380. https://doi.org/10.1016/j.indcrop.2012.04.045.

N. Yassa, F. Masoomi, R. Rohani, Chemical composition and antioxidant activity of the extract and essential oil of Rosa damascena from Iran, Population of Guilan, DARU J. Pharm. Sci.,, 17 (2009) 175-180. http://daru.tums.ac.ir/index.php/daru/article/view/541

V. Hajhashemi, A. Ghannadi, M. Hajiloo, Analgesic and anti-inflammatory effects of Rosa damascena hydroalcoholic extract and its essential oil in animal models, Iran. J. Pharm. Res., 9 (2010) 163. https://pubmed.ncbi.nlm.nih.gov/24363723/

G. Latifi, A. Ghannadi, M. Minaiyan, Anti-inflammatory effect of volatile oil and hydroalcoholic extract of Rosa damascena Mill. on acetic acid-induced colitis in rats, Res. Pharm. Sci., 10 (2015) 514. https://www.rpsjournal.net/

F. Fatemi, A. Golbodagh, R. Hojihosseini, A. Dadkhah, K. Akbarzadeh, S. Dini, M.R.M. Malayeri, Anti-inflammatory effects of deuterium-depleted water plus rosa damascena mill. Essential oil via cyclooxygenase-2 pathway in rats, Turk. J. Pharm. Sci., 17 (2020) 99. https://doi.org/10.4274/tjps.galenos.2018.24381.

M. Behbahani, Evaluation of in vitro anticancer activity of Ocimum basilicum, Alhagi maurorum, Calendula officinalis and their parasite Cuscuta campestris, PloS one, 9 (2014) e116049. https://doi.org/10.1371/journal.pone.0116049.

E.K. Selvi, H. Turumtay, A. Demir, E.A. Turumtay, Phytochemical profiling and evaluation of the hepatoprotective effect of Cuscuta campestris by high-performance liquid chromatography with diode array detection, Anal. Lett., 51 (2018) 1464-1478. https://doi.org/10.1080/00032719.2017.1382502.

M. Moradzadeh, A. Hosseini, H. Rakhshandeh, A. Aghaei, H.R. Sadeghnia, Cuscuta campestris induces apoptosis by increasing reactive oxygen species generation in human leukemic cells, Avicenna J. Phytomed., 8 (2018) 237. https://ajp.mums.ac.ir/

W.H. Peng, Y.W. Chen, M.S. Lee, W.T. Chang, J.C. Tsai, Y.C. Lin, M.K. Lin, Hepatoprotective effect of Cuscuta campestris Yunck. whole plant on carbon tetrachloride induced chronic liver injury in mice, Int. J. Mol. Sci., 17 (2016) 2056. https://doi.org/10.3390/ijms17122056.

E. Jafari, A. Bahmanzadegan, G. Ghanbarian, V. Rowshan, Antioxidant activity and total phenolic content from aerial parts of three Cuscuta species, Anal. Chem. Lett., 5 (2015) 377-384. http://dx.doi.org/10.1080/22297928.2016.1143394.

M.M. Akiner, E.K. Selvİ, M. Öztürk, I. Güney, U. Asu, Toxic efficacy of Cuscuta campestris Yunck.(Solanales: Convolvulaceae) and Lupinus albus L.(Fabales: Fabaceae) plant crude extracts against nymphs and adults of Orosanga japonica (Melichar, 1898)(Hemiptera: Ricaniidae) under laboratory conditions, Turk. Entomol. Derg., 45 (2021) 65-75. https://doi.org/10.16970/entoted.743439.

P. Khazaeli, M. Mehrabani, M.R. Heidari, G. Asadikaram, M.L. Najafi, Prevalence of aflatoxin contamination in herbs and spices in different regions of Iran, Iran. J. Public Health, 46 (2017) 1540. https://ijph.tums.ac.ir/index.php/ijph

P. Khazaeli , M. Mehrabani, Screening of sun protective activity of the ethyl acetate extracts of some medicinal plants, Iran. J. Pharm. Res., 1 (2010) 5-9. https://doi.org/10.22037/IJPR.2010.738.

J.D.S. Mansur, M.N.R. Breder, M.C.D.A. Mansur, R.D. Azulay, Determinaçäo do fator de proteçäo solar por espectrofotometria, An. Bras. Dermatol., (1986) 121-124. https://www.medscape.com/viewpublication/2466_33

M. Mostafavi, I. Sharifi, S. Farajzadeh, P. Khazaeli, H. Sharifi, E. Pourseyedi, S. Kakooei, M. Bamorovat, A. Keyhani, M.H. Parizi, Niosomal formulation of amphotericin B alone and in combination with glucantime: In vitro and in vivo leishmanicidal effects, Biomed. Pharmacother., 116 (2019) 108942. https://doi.org/10.1016/j.biopha.2019.108942.

B. Behnam, M. Rezazadehkermani, S. Ahmadzadeh, A. Mokhtarzadeh, S.N. Nematollahi-Mahani, A. Pardakhty, Microniosomes for concurrent doxorubicin and iron oxide nanoparticles loading; preparation, characterization and cytotoxicity studies, Artif. Cells Nanomed. Biotechnol., 46 (2018) 118-125. https://doi.org/10.1080/21691401.2017.1296850.

E. Mohammadi, M. Zeinali, M. Mohammadi-Sardoo, M. Iranpour, B. Behnam, A. Mandegary, The effects of functionalization of carbon nanotubes on toxicological parameters in mice, Hum. Exp. Toxicol., 39 (2020) 1147-1167. https://doi.org/10.1177/0960327119899988.

R. Mohammadinejad, A. Dehshahri, H. Sassan, B. Behnam, M. Ashrafizadeh, A. Samareh Gholami, A. Pardakhty, A. Mandegary, Preparation of carbon dot as a potential CRISPR/Cas9 plasmid delivery system for lung cancer cells, Minerva Biotecnol., 32 (2020) 106-113. https://doi.org/10.23736/S1120-4826.20.02618-X.

M. Moballegh-Nasery, A. Mandegary, T. Eslaminejad, M. Zeinali, A. Pardakhti, B. Behnam, M. Mohammadi, Cytotoxicity evaluation of curcumin-loaded affibody-decorated liposomes against breast cancerous cell lines, J. Liposome Res., 31 (2021) 189-194. https://doi.org/10.1080/08982104.2020.1755981.

D. Nathalie, G. Yannick, B. Caroline, D. Sandrine, F. Claude, C. Corinne, F. Pierre-Jacques, Assessment of the phototoxic hazard of some essential oils using modified 3T3 neutral red uptake assay, Toxicol. In Vitro, 20 (2006) 480-489. https://doi.org/10.1016/j.tiv.2005.08.018.

A. Da Silva Fernandes, L.B. Brito, G.A.R. Oliveira, E.R.A. Ferraz, H. Evangelista, J.L. Mazzei, I. Felzenszwalb, Evaluation of the acute toxicity, phototoxicity and embryotoxicity of a residual aqueous fraction from extract of the Antarctic moss Sanionia uncinata, BMC Pharmacol. Toxicol., 20 (2019) 1-10. https://doi.org/10.1186/s40360-019-0353-3.

Z. Hashemi, M.A. Ebrahimzadeh, M. Khalili, Sun protection factor, total phenol, flavonoid contents and antioxidant activity of medicinal plants from Iran, Trop. J. Pharm. Res., 18 (2019) 1443-1448. https://doi.org/10.4314/tjpr.v18i7.11.

M.A. Ebrahimzadeh, R. Enayatifard, M. Khalili, M. Ghaffarloo, M. Saeedi, J.Y. Charati, Correlation between sun protection factor and antioxidant activity, phenol and flavonoid contents of some medicinal plants, Iran. J. Pharm. Res., 13 (2014) 1041. https://brieflands.com/journals/iranian-journal-of-pharmaceutical-research/

L.F. Amaral, P. Moriel, M.A. Foglio, P.G. Mazzola, Evaluation of the cytotoxicity and phototoxicity of Caryocar brasiliense supercritical carbon dioxide extract, BMC Complement. Altern. Med., 14 (2014) 1-6. https://doi.org/10.1186/1472-6882-14-450.

A.R. Svobodová, B. Zálešák, D. Biedermann, J. Ulrichová, J. Vostálová, Phototoxic potential of silymarin and its bioactive components, J. Photochem. Photobiol. B, 156 (2016) 61-68. https://doi.org/10.1016/j.jphotobiol.2016.01.011.

Published
2022-12-30
How to Cite
Khazaeli, P., Ameri, A., Mehrabani, M., Barazvan, M., Sajadi ‎BamiM., & Behnam, B. (2022). In-vitro evaluation of photoprotection, cytotoxicity and phototoxicity of aqueous extracts of Cuscuta campestris and Rosa damascene by MTT method and UV spectroscopy analysis. Analytical Methods in Environmental Chemistry Journal, 5(04), 55-65. https://doi.org/10.24200/amecj.v5.i04.202
Section
Original Article