One-step synthesis of zinc-encapsulated MCM-41 as H2S adsorbent and optimization of adsorption parameters

Vol 3, Issue 02, Pages 74-81,*** Field: Nano chemistry method

  • Nastaran Hazrati Department of Chemistry, Amirkabir University of Technology
  • Ali Akbar Miran Beigi, (Corresponding Author)* Oil Refining Research Division, Research Institute of Petroleum Industry
  • Majid Abdouss Department of Chemistry, Amirkabir University of Technology
  • Amir Vahid Research Institute of Petroleum Industry
Keywords: Zinc encapsulated MCM-41, H2S gas, Adsorption, Extraction, UOP163 method

Abstract

The nano-sized structure of well-ordered Zn@MCM-41 adsorbent was synthesized through a direct hydrothermal method using CTAB as a structure-directing agent in an ammonia aqueous solution with different amounts of zinc acetylacetonate which were inserted into the structure-directing agent's loop during the synthesis. The XRD, HRTEM, and N2 adsorption-desorption isotherms were used to characterize the prepared ZnO functionalized mesoporous silica samples. As a result, the presence of ZnO in highly-ordered MCM-41's pore was proved as well as maintenance of the ordered mesostructure of MCM-41. The materials were possessed with a high specific surface area (1114-509 m2.g-1) and a large pore diameter (4.03-3.27 nm). Based on the obtained results from the adsorption of H2S gas in a lab-made setup, the Znx@MCM-41 showed the superior ability to increase of ZnO amount up to 7 hours as a breakthrough point. 

References

C. Bensing, M. Mojić, S. Gómez-Ruiz, S. Carralero, B. Dojčinović, D. Maksimović-Ivanić, S. Mijatović, G.N. Kaluderović, Evaluation of functionalized mesoporous silica SBA-15 as a carrier system for Ph3Sn(CH2)3OH against the A2780 ovarian carcinoma cell line, Dalton Trans., 45 (2016) 18984-18993.

Y. Wan, D. Zhao, On teh controllable soft-templating approach to mesoporous silicates, Chem. Rev., 107 (2007) 2821–2860.

A. Sterczynska, A. Derylo-Marczewska, M. Zienkiewicz-Strzalka, M. Sliwinska- Bartkowiak, K. Domin, Surface properties of Al-functionalized mesoporous MCM-41 and teh melting behavior of water in Al-MCM-41 nanopores, Langmuir, 33 (2017) 11203–11216.

F.J. Carmona, I. Jimenez-Amezcua, S. Rojas, C.C. Romao, J.A. Navarro, C.R. Maldonado, E. Barea, Aluminum doped MCM-41 nanoparticles as platforms for the dual encapsulation of a CO-releasing molecule and cisplatin, Inorg. Chem., 56 (2017) 10474-10480.

M. Abdouss, N. Hazrati, A.A. Miran-Beigi, A. Vahid, A. Mohammadalizadeh, Effect of the structure of the support and the aminosilane type on the adsorption of H2S from model gas, RSC Adv., 4 (2014) 6337-6345.

M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051-1069.

V.B. Cashin, D.S. Eldridge, A. Yu, D. Zhao, Surface functionalization and manipulation of mesoporous silica adsorbents for improved removal of pollutants: a review, Environ. Sci. Water Res. Technol., 4 (2018) 110-118.

E. Dündar-Tekkaya, Y. Yürüm, Int. J. Hydrog, Mesoporous MCM-41 material for hydrogen storage: A short review, Int. J. Hydrog. Energ., 41 (2016) 9789-9795.

E. Lovell, Y. Jiang, J. Scott, F. Wang, Y. Suhardja, M. Chen, J. Huang, R. Amal, CO2 reforming of methane over MCM-41-supported nickel catalysts: altering support acidity by one-pot synthesis at room temperature, App. Catal. A: General, 473 (2014) 51-58.

B.S. Kim, C.S. Jeong, J. M. Kim, S.B. Park, S.H. Park, J.K. Jeon, S.C. Jung, S.C. Kim, Y.K. Ex Situ, Catalytic upgrading of lignocellulosic biomass components over vanadium contained H-MCM-41 catalysts, Catal. Today, 265 (2016) 184-191.

M. Fadhli, I. Khedher, J.M. Fraile, J. Mol. Catal, Modified Ti/MCM-41 catalysts for enantioselective epoxidation of styrene, J. Mol. Catal. A Chem., 420 ( 2016) 282-289.

WY. Sang, OP. Ching, Tailoring MCM-41 mesoporous silica particles through modified sol-gel process for gas separation, AIP Conf. Proc., 1891 (2017) 020147.

E. Beňová, V. Zeleňák, D. Halamová, M. Almáši, V. Petrul’ová, M. Psotka, A. Zeleňáková, M. Bačkor, V. Hornebecq, A drug delivery system based on switchable photo-controlled p-coumaric acid derivatives anchored on mesoporous silica, J. Mater. Chem. B, 5 (2017) 817-825.

JJ. Zhang, WY. Wang, GJ. Wang, C. Kai, H. Song, L. Wang, Equilibrium, kinetic and thermodynamic studies on adsorptive removal of H2S from natural gas by amine functionalisation of MCM-41. Prog. React. Kinet. Mec., 42 (2017) 221-234.

N. Hazrati, M. Abdouss, A. Vahid, A. A. Miran Beigi, A. Mohammadalizadeh, Removal of H 2 S from crude oil via stripping followed by adsorption using ZnO/MCM-41 and optimization of parameters, Environ. Sci. Technol., (2014) 997-1006.

Y.S. Hong, Z.F. Zhang, Z.P. Cai, X.H. Zhao,B.S. Liu, Deactivation kinetics model of H2S removal over mesoporous LaFeO3/MCM-41 sorbent during hot coal gas desulfurization. Sustain, Energ. Fuels, 28 (2014) 6012-6018.

X. Feng, Z. Yan, N. Chen, Y. Zhang, X. Liu, Y. Ma, X. Yang, W. Hou, Synthesis of a graphene/polyaniline/MCM-41 nanocomposite and its application as a supercapacitor. New J. Chem., 37 (2013) 2203-2209.

Y. Bao, X. Yan, W. Du, X. Xie, X. Pan, J. Zhou, L. Li, Application of amine-functionalized MCM-41 modified ultrafiltration membrane to remove chromium (VI) and copper (II), Chem. Eng. J., 281 (2015) 460-4607.

D.P. Sahoo, D. Rath, B. Nanda, K. Parida, Transition metal/metal oxide modified MCM-41 for pollutant degradation and hydrogen energy production: a review, RSC Adv., 5(2015) 83707-83724.

E.P. Baston, A.B. Franca, A.V. da Silva Neto, E.A. Urquieta-Gonzalez, Incorporation of the precursors of Mo and Ni oxides directly into the reaction mixture of sol–gel prepared γ-Al2O3-ZrO2 supports evaluation of the sulfided catalysts in the thiophene hydrodesulfurization, Catal. Today, 246 (2015) 184-190.

A. Kowalczyk, A. Borcuch, M. Michalik, M. Rutkowska, B. Gil, Z. Sojka, P. Indyka, L. Chmielarz, MCM-41 modified with transition metals by template ion-exchange method as catalysts for selective catalytic oxidation of ammonia to dinitrogen, Micropor. Mesopor. Mater., 240 (2017) 9-21.

KS. Kamarudin, NO. Alias, Adsorption performance of MCM-41 impregnated with amine for CO2 removal, Fuel Process. Technol., 106 (2013) 332-337.

S. Qiu, X. Zhang, Q. Liu, T. Wang, Q. Zhang, L. Ma, A simple method to prepare highly active and dispersed Ni/MCM-41 catalysts by co-impregnation, Catal. Commun., 42 (2013) 73-78.

R. Atchudan, S. Perumal, TN. Edison, YR. Lee, Highly graphitic carbon nanosheets synthesized over tailored mesoporous molecular sieves using acetylene by chemical vapor deposition method, RSC adv., 5 (2015) 93364-93373.

AA. Gewirth, JA. Varnell, AM. Di Ascro. Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems, Chem. Rev., 118 (2018) 2313-2339.

B. Elyassi, Y. Al Wahedi, N. Rajabbeigi, P. Kumar, J.S. Jeong, X. Zhang, P. Kumar, V.V. Balasubramanian, M.S. Katsiotis, K.A. Mkhoyan, N. Boukos. A high-performance adsorbent for hydrogen sulfide removal, Micropor. Mesopor. Mater., 190 (2014) 152-155.

S. Jafarinejad, Control and treatment of sulfur compounds specially sulfur oxides (SOx) emissions from the petroleum industry: a review, Chem. Int., 2 (2016) 242-253.

P.R. Westmoreland, D.P. Harrison, Evaluation of candidate solids for high-temperature desulfurization of low-Btu gases, Environ. Sci. Technol., 10 (1976) 659-661.

Published
2020-06-29
How to Cite
Hazrati, N., Miran Beigi, A. A., Abdouss, M., & Vahid, A. (2020). One-step synthesis of zinc-encapsulated MCM-41 as H2S adsorbent and optimization of adsorption parameters. Analytical Methods in Environmental Chemistry Journal, 3(02), 74-81. https://doi.org/10.24200/amecj.v3.i02.104
Section
Original Article