Facile synthesis of a modified HF-free MIL-101(Cr) nanoadsorbent for extraction nickel in water and wastewater samples

Vol 3, Issue 02, Pages 59-73,*** Field: Analytical chemistry in Environment

  • Saeed Fakhraie, (Corresponding Author)* Chemistry Department, Yasouj University
  • Ali Ebrahimi Occupational Health Engineering Department, School of Public Health, Qom University of Medical Sciences, Qom, Iran
Keywords: MIL-101(Cr) nanoadsorbent, Nickel, Water and wastewaters, Dispersive suspension micro solid phase extraction, Atom trap-flame atomic absorption spectrometry

Abstract

A novel sorbent based on MIL-101(Cr) nanoadsorbent as MOF structure was used for nickel extraction from water and wastewater samples. In this study, 30 mg of MIL-101(Cr) nanoadsorbent dispersed in 50 mL of water or wastewater samples, after sonication and adjusting pH =8.5, the nickel ions was extracted by carboxyl groups of terephthalic acid (MOF-(C6H4 (COO)-2…. Ni2+) by dispersive suspension micro solid phase extraction (DS-μ-SPE).The MOF was separated from liquid phase with filter membrane (0.2 μm), eluted with 0.5 mL of nitric acid as back-extraction solution and finally, the nickel concentration in eluent determined by atom trap-flame atomic absorption spectrometry (AT-FAAS) after dilution with DW up to 1 mL.The LOD, the linear range and preconcentration factor were achieved 1.5 µg L−1, 5-160 µg L−1 and 49.7, respectively.The absorption capacity of MOF for nickel was obtained 136.8 mg g-1.The results of procedure were validated by spiking of samples and ET-AAS analyzer.

References

E. Nieboer, J.O. Nriagu, Nickel and human health, International Conference on nickel metabolism and toxicology, Espoo, Finland. Wiley, 1992.

K.K. Das, S.N. Das, S. A. Dhundasi, Nickel: molecular diversity, application, essentiality and toxicity in human health, Biometals: molecular structures, binding properties and applications, Nova Sci. Publishers, (2010) 33-58.

A. Arita, M. Costa, Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium, Metallomics, 3 (2009) 222-228.

K.S. Cameron, B. Virginia, B.T. Paul, Exploring the molecular mechanisms of nickel-induced genotoxicity and carcinogenicity: a literature review, Rev. Environ. Health, 2 (2011) 81-92.

K.K. Das, S.N. Das, S. A. Dhundasi, Nickel, its adverse health effects & oxidative stress, Indian J. Med. Res., 4 (2008) 412.

A. Arita, M. Costa, Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium, Metallomics, 3 (2009) 222-228.

P.C. Nagajyoti, K.D. Lee, T.V.M. Sreekanth. Heavy metals, occurrence and toxicity for plants: a review, Environ. Chem. lett., 3 (2010) 199-216.

A. Duda-Chodak, U. Blaszczyk, The impact of nickel on human health, J. Elem., 4 (2008) 685-693.

S. Buxton, E. Garman, K.E. Heim, T. Lyons-Darden, C. E. Schlekat, M. D. Taylor, A.R. Oller, Concise review of nickel human health toxicology and ecotoxicology, Inorganics, 7 (2019) 89.

N. Alam, S.J. Corbett, H.C. Ptolemy, Environmental health risk assessment of nickel contamination of drinking water in a country town in NSW, New South Wales Public Health bull., 10 (2008) 170-173.

M.G. Permenter, J.A. Lewis, D.A. Jackson, Exposure to nickel, chromium, or cadmium causes distinct changes in the gene expression patterns of a rat liver derived cell line, PLOS one, 11 (2011) e27730.

F. Akbal, S. Camcı, Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation, Desalination, 3 (2011) 214-222.

K. Bhupander, D.P. Mukherjee, Assessment of human health risk for arsenic, copper, nickel, mercury and zinc in fish collected from tropical wetlands in India, Adv. Life Sci. Technol., 2 (2011) 13-24.

NIOSH Manual of analytical methods (NMAM, 5 Edition), U.S. department of health and human services, 2015.

H. Abdolmohammad-Zadeh, E. Ebrahimzadeh. Ligandless cloud point extraction for trace nickel determination in water samples by flame atomic absorption spectrometry, J. Brazilian Chem. Soc., 3 (2011) 517-524.

C.A. Şahin, M. Efeçınar, N. Şatıroğlu. Combination of cloud point extraction and flame atomic absorption spectrometry for preconcentration and determination of nickel and manganese ions in water and food samples, J. Hazard. Mater., 3 (2010) 672-677.

A. Safavi, H. Abdollahi, M.R. Hormozi Nezhad, R. Kamali, Cloud point extraction, preconcentration and simultaneous spectrophotometric determination of nickel and cobalt in water samples, Spectrochim. Acta Part A: Mol. Biomol. Spec., 12 (2004) 2897-2901.

J. Chen, K.C. Teo, Determination of cobalt and nickel in water samples by flame atomic absorption spectrometry after cloud point extraction, Anal. Chim. Acta, 2 (2001) 325-330.

J.L. Manzoori, G. Karim-Nezhad, Development of a cloud point extraction and preconcentration method for Cd and Ni prior to flame atomic absorption spectrometric determination, Anal. Chim. Acta, 2 (2004) 173-177.

C. Fan, Q. Pan, Q. Li, L. Wang, Cloud point-TiO 2/sepiolite composites extraction for simultaneous preconcentration and determination of nickel in green tea and coconut water, J. Iran. Chem. Soc., 2 (2016) 331-337.

S.M.N. Moalla, A.S. Amin. An ionic liquid-based microextraction method for highly selective and sensitive trace determination of nickel in environmental and biological samples, Anal. Method., 24 (2015) 10229-10237.

A. Moghimi, M.J. Poursharifi, Perconcentration of Ni (II) from sample water by modified nano fiber, Oriental J. Chem., 1 (2012) 353.

S.Z. Mohammadi, D. Afzali, Y.M. Baghelani. Flame atomic absorption spectrometry determination of trace amounts of nickel ions in water samples after ligandless ultrasound-assisted emulsification microextraction, Anal. Sci., 9 (2010) 973-977.

V.A. Lemos, G.S. Do Nascimento, L.S. Nunes, A new functionalized resin for preconcentration and determination of cadmium, cobalt, and nickel in sediment samples, Water, Air, Soil Pollut., 2 (2015) 2.

H. Shirkhanloo, M. Falahnejad, H. Zavvar Mousavi, Mesoporous silica nanoparticles as an adsorbent for preconcentration and determination of trace amount of nickel in environmental samples by atom trap flame atomic absorption spectrometry, J. Appl. Spec., 6 (2016) 1072-1077.

H. Sereshti, V. Khojeh, M. Karimi, S. Samadi, Ligandless-ultrasound-assisted emulsification-microextraction combined with inductively coupled plasma-optical emission spectrometry for simultaneous determination of heavy metals in water samples, Anal. Method., 1 (2012) 236-241.

V.A. Lemos, V.J. Ferreira, J.A. Barreto, L.A. Meira, Development of a method using ultrasound-assisted emulsification microextraction for the determination of nickel in water samples, Water, Air, Soil Pollut., 5 (2015) 141.

M. Karimi, S. Dadfarnia, A.M.H. Shabani, Application of deep eutectic solvent modified cotton as a sorbent for online solid-phase extraction and determination of trace amounts of copper and nickel in water and biological samples, Biol. Trace Elem. Res., 1 (2017) 207-215.

M.R. Jamali, A. Madadjo, R. Rahnama. Determination of nickel using cold-induced aggregation microextraction based on ionic liquid followed by flame atomic absorption spectrometry, J. Anal. Chem., 5 (2014) 426-431.

J.L. Manzoori, G. Karim-Nezhad, Development of a cloud point extraction and preconcentration method for Cd and Ni prior to flame atomic absorption spectrometric determination, Anal. Chim. Acta, 2 (2004) 173-177.

A.A. Gouda, A.M. Summan, A.H. Amin, Development of cloud-point extraction method for preconcentration of trace quantities of cobalt and nickel in water and food samples, RSC Adv., 96 (2016) 94048-94057.

T.G. Kazi, H.I. Afridi, N. Kazi, M.K. Jamali, M.B. Arain. Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients, Biol. Trace Elem. Res., 1 (2008) 1-18.

F.A. Lobo, D. Goveia, A.P. Oliveira, L.P.C. Romão, Development of a method to determine Ni and Cd in biodiesel by graphite furnace atomic absorption spectrometry, Fuels, 1 (2011) 142-146.

P. Liang, L. Peng, "Determination of nickel in water samples by graphite furnace atomic absorption spectrometry after ionic liquid-based dispersive liquid-liquid microextraction preconcentration, Atom. Spec., 2 (2012) 53-58.

Y Xu, J Zhou, G Wang, J Zhou, G Tao, Determination of trace amounts of lead, arsenic, nickel and cobalt in high-purity iron oxide pigment by inductively coupled plasma atomic emission spectrometry after iron matrix removal with extractant-contained resin, Anal. Chim. Acta, 1 (2007) 204-209.

F. Zhou, C. Li, H. Zhu, Y. Li, A novel method for simultaneous determination of zinc, nickel, cobalt and copper based on UV–VIS spectrometry, Optik, 182 (2019) 58-64.

X. Lu, L. Wang, K. Lei, J. Huang, Y. Zhai, Contamination assessment of copper, lead, inc, manganese and nickel in street dust of Baoji, NW China, J. Hazard. Mater., 3 (2009) 1058-1062.

Q. Zhou, A. Xing, K. Zhao, Simultaneous determination of nickel, cobalt and mercury ions in water samples by solid phase extraction using multiwalled carbon nanotubes as adsorbent after chelating with sodium diethyldithiocarbamate prior to high performance liquid chromatography, J. Chromatogr. A, 1360 (2014) 76-81.

Q. Han, Y. Huo, L. Yang, X. Yang, Y. He, J. Wu, Determination of trace nickel in water samples by graphite furnace atomic absorption spectrometry after mixed micelle-mediated cloud point extraction, Molecules, 10 (2018) 2597.

G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area, Sci., 309 (2005) 2040–2042.

M.S. Alivand, M. Shafiei-Alavijeh, Tehrani NHMH, E. Ghasemy, A. Rashidi, S. Fakhraie, Facile and high-yield synthesis of improved MIL-101(Cr) metal-organic framework with exceptional CO2 and H2S uptake; the impact of excess ligand- cluster, Micropor. Mesopor. Mater., 279 (2019) 153–164.

M. Montazerolghaema, S.F. Aghamiri, S. Tangestaninejad, M.R. Talaie, Metal-or- ganic framework MIL-101 doped with metal nanoparticles (Ni & Cu) and its effect on CO2 adsorption properties, RSC Adv., 6 (2016) 632–640.

S. Pourebrahimi, M. Kazemeini, L. Vafajoo, Embedding graphene nanoplates into MIL-101(Cr) pores: synthesis, characterization, and CO2 adsorption studies, Ind. Eng. Chem. Res., 56 (2017) 3895–3904.

N.A.A. Qasem, N.U. Qadir, R. Ben-Mansour, S.A.M. Said, Synthesis, characteriza- tion, and CO2 breakthrough adsorption of a novel MWCNT/MIL-101(Cr) composite, J. CO2 Util. 22 (2017) 238–249.

P.L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi, L. Hamon, G.D. Weireld,

J.S. Chang, D.Y. Hong, Y.K. Hwang, S.H. Jhung, G. Fe´rey, High uptakes of CO2 and CH4 in mesoporous metals organic frameworks MIL-100 and MIL-101, Langmuir J., 24 (2008) 7245–7250.

S. Kayal, B. Sun, A. Chakraborty, Study of metal-organic framework MIL-101(Cr) for natural gas (methane) storage and compare with other MOFs (metal-organic frameworks), Energ., 91 (2015) 772–781.

K. Munusamy, G. Sethia, D.V. Patil, P.B.S. Rallapalli, R.S. Somani, H.C. Bajaj, Sorption of carbon dioxide, methane, nitrogen and carbon monoxide on MIL- 101(Cr): volumetric measurements and dynamic adsorption studies, Chem. Eng. J., 195 (2012) 359-68.

P. Chowdhury, S. Mekala, F. Dreisbach, S. Gumma, Adsorption of CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks: effect of open metal sites and adsorbate polarity, Mesopor. Mater., 152 (2012) 246–252.

P.Á Szilágyi, P. Serra-Crespo, J. Gascon, H. Geerlings, B. Dam, The impact of post- synthetic linker functionalization of MOFs on methane storage: the role of defects, Front. Energ. Res., 4 (2016) 9.

Z. Yu, J. Deschamps, L. Hamon, P.K. Prabhakaran, P. Pre, Hydrogen adsorption and kinetics in MIL-101(Cr) and hybrid activated carbon-MIL-101(Cr) materials, Int. J. Hydrogen Energ., 45 (2017) 8021–8031.

A. Malouche, G. Blanita, D. Lupu, J. Bourgon, J. Nelayah, C. Zlotea, Hydrogen absorption in 1 nm Pd clusters confined in MIL-101(Cr), J. Mater. Chem., 44 (2017) 23043–23052.

N. Bimbo, W. Xu, J.E. Sharpe, V.P. Ting, T.J. Mays, High-pressure adsorptive sto- rage of hydrogen in MIL-101 (Cr) and AX-21 for mobile applications: Cryocharging and cryokinetics, Mater. Design., 89 (2016) 1086–1094.

G. Blăniţă, M. Streza, M.D. Lazăr, D. Lupu, Kinetics of hydrogen adsorption in MIL- 101 single pellets, Int. J. Hydrogen Energ., 42 (2017) 3064–3077.

X. Zhou, W. Huang, J. Miao, Q. Xia, Z. Zhang, H. Wang, Z. Li, Enhanced separation performance of a novel composite material GrO@MIL-101 for CO2/CH4 binary mixture, Chem. Eng. J., 266 (2015) 339–344.

M.S. Alivand, F. Farhadi, Multi-objective optimization of a multi-layer PTSA for LNG production, J. Nat. Gas Sci. Eng., 49 (2018) 435–446.

Q. Yan, Y. Lin, C. Kong, L. Chen, Remarkable CO2/CH4 selectivity and CO2 ad- sorption capacity exhibited by polyamine-decorated metal-organic framework ad- sorbents, Chem. Commun., 49 (2013) 6873–6875.

Y. Lin, H. Lin, H. Wang, Y. Suo, B. Li, C. Kong, L. Chen, Enhanced selective CO2 adsorption on polyamine/MIL-101(Cr) composites, J. Mater. Chem. A., 2 (2014) 14658–14665.

Z. Zhou, L. Mei, C. Ma, F. Xu, J. Xiao, Q. Xia, Z. Li, A novel bimetallic MIL-101(Cr, Mg) with high CO2 adsorption capacity and CO2/N2 selectivity, Chem. Eng. Sci., 147 (2016) 109–117.

Q. Liu, L. Ning, S. Zheng, M. Tao, Y. Shi, Y. He, Adsorption of carbon dioxide by MIL-101(Cr): regeneration conditions and influence of flue gas contaminants, Sci. Rep., 3 (2013) 2916.

Y. Wang, Y. Zhang, Z. Jiang, G. Jiang, Z. Zhao, Q. Wu, Y. Liu, Q. Xu, A. Duan, C. Xu, Controlled fabrication and enhanced visible-light photocatalytic hydrogen pro- duction of Au@CdS/MIL-101 heterostructure, Appl. Catal. B: Environ., 185 (2016) 307–314.

X. Li, Y. Pi, Q. Xia, Z. Li, J. Xiao, TiO2 encapsulated in Salicylaldehyde-NH2-MIL- 101(Cr) for enhanced visible light-driven photodegradation of MB, Appl. Catal. B: Environ., 191 (2016) 192–201.

M.L. Hu, V. Safarifard, E. Doustkhah, S. Rostamnia, A. Morsali, N. Nouruzi, S. Beheshti, K. Akhbari, Taking organic reactions over metal-organic frameworks as heterogeneous catalysis, Micropor. Mesopor. Mater., 256 (2018) 111–127.

L. Qin, Z. Li, Z. Xu, X. Guo, G. Zhang, Organic-acid-directed assembly of iron-carbon oxides nanoparticles on coordinatively unsaturated metal sites of MIL-101 for green photochemical oxidation, Appl. Catal. B: Environ., 179 (2015) 500–508.

M. Shafiei, M.S. Alivand, A. Rashidi, A. Samimi, D. Mohebbi-Kalhori, Synthesis and adsorption performance of a modified micro-mesoporous MIL-101 (Cr) for VOCs removal at ambient conditions, Chem. Eng. J., 341 (2018) 164-174.

P.B. Rallapalli, M.C. Raj, S. Senthilkumar, R.S. Somani, H.C. Bajaj, HF‐free synthesis of MIL‐101 (Cr) and its hydrogen adsorption studies, Environ. Prog. Sustain. Energ., 2 (2016) 461-468.

N. Tian, The synthesis of mesostructured NH 2-MIL-101 (Cr) and kinetic and thermodynamic study in tetracycline aqueous solutions, J. Porous Mater., 5 (2016) 1269-1278.

M. Behbahani, V. Zarezade, A. Veisi, F. Omidi, S. Bagheri, Modification of magnetized MCM-41 by pyridine groups for ultrasonic-assisted dispersive micro-solid-phase extraction of nickel ions, Int. J. Environ. Sci. Technol., 10 (2019) 6431-6440.

Published
2020-06-28
How to Cite
Fakhraie, S., & Ebrahimi, A. (2020). Facile synthesis of a modified HF-free MIL-101(Cr) nanoadsorbent for extraction nickel in water and wastewater samples. Analytical Methods in Environmental Chemistry Journal, 3(02), 59-73. https://doi.org/10.24200/amecj.v3.i02.103
Section
Original Article