A review: Methods for removal and adsorption of volatile organic compounds from environmental matrixes

Vol 3, Issue 02, Pages 34-58,*** Field: Methods in Environmental Analytical Chemistry

  • Shahnaz Teimoori Department of Environment and Natural Resources, Islamic Azad University, Science and Research Branch, Tehran, Iran
  • Amir Hessam Hassani, (Corresponding Author)* Department of environmental engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Mostafa Panahi Department of environmental engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Nabiollah Mansouri Department of environmental engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
Keywords: Volatile organic compounds, Chemistry and biochemistry method, Removal, Adsorption, Water and air

Abstract

The volatile organic compounds (VOCs) have toxic effect on human health and environmental matrixes. So, determination and removal VOCs from the environmental samples such as water, wastewater and air are very important as toxicology effect on humans. Many chemistry techniques such as; analytical methods for sorbents (extraction, adsorption), sole gel method, pervaporation, regenerative catalytic oxidation (RCO), recuperative catalytic oxidation (CO), adsorptive concentration-catalytic oxidation, photocatalytic oxidation (PCO), ozonation-catalytic oxidation and non-thermal plasma-catalytic oxidation, were used for removal and decreasing of VOCs from different matrix. This review study introduces the adsorbents and applied chemistry methods which were recently used in different works for removal of VOCs in air or water samples by scientists.

References

K. Tzortzatou, E. Grigoropoulou, Catalytic oxidation of industrial organic solvent vapors, J. Environ. Sci. Health Part A, 45 (2010) 534-541.

I. Rutkiewicz, W. Kujawski, J. Namieśnik, Pervaporation of volatile organohalogen compounds through polydimethylsiloxane membrane, Desalination, 264 (2010) 160-164.

W.S. Backer, WITHDRAWN: The impact of methyl tertiary-butyl ether (MTBE) on contaminated drinking water in organic blood chemistry, Elsevier. 2013.

I. Levchuk, A. Bhatnagar, M. Sillanpää, Overview of technologies for removal of methyl tert-butyl ether (MTBE) from water, Sci. Total Environ., 476 (2014).415-433.

C. Perego, R. Bagatin, M. Tagliabue, R. Vignol, et al., Zeolites and related mesoporous materials for multi-talented environmental solutions, Micropor. Mesopor. Mater., 166 (2013) 37-49.

S. Xia, X. Dong, Y. ZHU, W. Wei, F. Xiangli, W. Jin, Dehydration of ethyl acetate–water mixtures using PVA/ceramic composite pervaporation membrane, Sep. Purif. Technol., 77 (2011) 53-59.

U. Hömmerich, R. Rautenbach, Design and optimization of combined pervaporation/distillation processes for the production of MTBE, J. Membrane Sci., 146 (1998) 53-64.

W. Kujawski, Application of pervaporation and vapor permeation in environmental protection, Polish J. Environ. Studies, 9 (2000)13-26.

P. Sampranpiboon, R. Jiraratananon, D. Uttapap, X. Feng, RY. Huang., Pervaporation separation of ethyl butyrate and isopropanol with polyether block amide (PEBA) membranes, J. Membrane Sci., 173 (2000) 53-59.

W. Yoshida, Y. Cohen, Removal of methyl tert-butyl ether from water by pervaporation using ceramic-supported polymer membranes, J. Membrane Sci., 229 (2004) 27-32.

D. Zadaka-Amir, A. Nasser, S. Nir, YG. Mishael, Removal of methyl tertiary-butyl ether (MTBE) from water by polymer–zeolite composites, Micropor. Mesopor. Mater., 151(2012) 216-222.

K. Zhou, QG. Zhang, GL. Han, AM. Zhu, QL. Liu, Pervaporation of water–ethanol and methanol–MTBE mixtures using poly (vinyl alcohol)/cellulose acetate blended membranes, J. Membrane Sci., 448 (2013) 93-101.

A. Kumar, BP. Singh, M. Punia, D. Singh, K. Kumar, VK. Jain, Assessment of indoor air concentrations of VOCs and their associated health risks in the library of Jawaharlal Nehru University, New Delhi, Environ. Sci. Pollut. Res., 21 (2014)2240-2248.

P. Saxena, C. Ghosh, A review of assessment of benzene, toluene, ethylbenzene and xylene (BTEX) concentration in urban atmosphere of Delhi, Int. J. Phys. Sci., 7 (2012) 850-860.

A.R. Schnatter, DC. Glass, G. Tang, RD. Irons, L. Rushton, Myelodysplastic syndrome and benzene exposure among petroleum workers: an international pooled analysis, J. Natl. Cancer Inst., 104 (2012) 1724-1737.

T. Tunsaringkarn, W. Siriwong, A. Rungsiyothin, S. Nopparatbundit, Occupational exposure of gasoline station workers to BTEX compounds in Bangkok, Thailand, Int. J. Occup. Environ. Med., 3 (2012) 117-125.

Cancer, I.A.f.R.o. Agents classified by the IARC Monographs. International Agency for Research on Cancer, pp1-109, 2014. http://monographs.iarc.fr/ENG/Classification/ClassificationsAlphaOrder.pdf

S. Garte, E. Taioli, T. Popov, C. Bolognesi, P. Farmer, F. Merlo, Genetic susceptibility to benzene toxicity in humans, J. Toxicol. Environ. Health Part A, 71 (2008)1482-1489.

C. Abbate, C. Giorgianni, F. Munao, R. Brecciaroli, Neurotoxicity induced by exposure to toluene, Int. Arch. Occup. Environ. Health, 64 (1993) 389-392.

L. Ernstgård, E. Gullstrand, A. Löf, G. Johanson, Are women more sensitive than men to 2-propanol and m-xylene vapors, Occup. Environ. Med., 59 (2002) 759-767.

GG. Bond, EA. McLaren, CL. Baldwin, RR. Cook, An update of mortality among chemical workers exposed to benzene, Occup. Environ. Med., 43 (1986) 685-691.

MA. Midzenski, MA. McDiarmid, N. Rothman, K. Kolodner, Acute high dose exposure to benzene in shipyard workers. Am. J. Ind. Med., 22 (1992) 553-565.

K. Murata, S. Araki, K. Yokoyama, T. Tanigawa, K. Yamashita, F. Okajima, T. Sakai, C. Matsunaga, K. Suwa, Cardiac autonomic dysfunction in rotogravure printers exposed to toluene in relation to peripheral nerve conduction, Ind. health, 31(1993) 79-90.

JE. Cometto-Mu, WS. Cain, Relative sensitivity of the ocular trigeminal, nasal trigeminal and olfactory systems to airborne chemicals, Chem. Senses., 20 (1995) 191-198.

E. Ahaghotu, RJ. Babu, A. Chatterjee, M. Singh, Effect of methyl substitution of benzene on the percutaneous absorption and skin irritation in hairless rats, Toxicol. lett., 159 (2005) 261-271.

F. Doghieri, A. Nardella, GC. Sarti, C. Valentini, Pervaporation of methanol-MTBE mixtures through modified poly (phenylene oxide) membranes, J. Membrane Sci., 91(1994) 283-291.

L. Gales, A. Mendes, C. Costa, Removal of acetone, ethyl acetate and ethanol vapors from air using a hollow fiber PDMS membrane module, J. Membrane Sci., 197(2002)211-222.

W. Kujawski, S. Krajewska, M. Kujawski, L. Gazagnes, A. Larbot, M. Persin, Pervaporation properties of fluoroalkylsilane (FAS) grafted ceramic membranes, Desalination., 205 (2007) 75-86.

A. Urkiaga, N. Bolano, L. De Las Fuentes, Removal of micropollutants in aqueous streams by organophilic pervaporation, Desalination.,149 (2002) 55-60.

J. Cheng, L. Li, Y. Li, Q. Wang, C. He, Fabrication of pillar [5] arene-polymer-functionalized cotton fibers as adsorbents for adsorption of organic pollutants in water and volatile organic compounds in air, Cellulose, 26 (2019) 3299-3312.

V. Kumar, S. Kumar, KH. Kim, DC. Tsang, SS. Lee, Metal organic frameworks as potent treatment media for odorants and volatiles in air, Environ. Res. Lett., 168 (2019)336-356.

S. KP Veerapandian, N. De Geyter, JM. Giraudon, JF. Lamonier, R. Morent, The use of zeolites for VOCs abatement by combining non-thermal plasma, adsorption, and/or catalysis: a review, Catalysts, 9 (2019) 98.

J. Hou, Z. Xia, S. Li, K. Zhou, N. Lu, Operation parameter optimization of a gas hydrate reservoir developed by cyclic hot water stimulation with a separated-zone horizontal well based on particle swarm algorithm, Energy J., 96 (2016) 581-591.

MA. Campesi, CD. Luzi, GF. Barreto, OM. Martínez, Evaluation of an adsorption system to concentrate VOC in air streams prior to catalytic incineration, J. Environ. Manage., 154 (2015) 216-224.

F. Chu, Y. Zheng, B. Wen, L. Zhou, J. Yan, Y. Chen, Adsorption of toluene with water on zeolitic imidazolate framework-8/graphene oxide hybrid nanocomposites in a humid atmospherem, RSC Adv., 8 (2018) 2426-2432.

M. Mao, Y. Li, J. Hou, M. Zeng, X. Zhao. Extremely efficient full solar spectrum light driven thermocatalytic activity for the oxidation of VOCs on OMS-2 nanorod catalyst, Appl. Catal. B., 174 (2015) 496-503.

W. Jianping, C. Yu, J. Xiaoqiang, C. Dongyan, Simultaneous removal of ethyl acetate and ethanol in air streams using a gas–liquid–solid three-phase flow airlift loop bioreactor, Chem. Eng. J., 106 (2005) 171-175.

LM. Vane, FR. Alvarez, Full-scale vibrating pervaporation membrane unit: VOC removal from water and surfactant solutions, J. Membrane Sci., 202 (2002) 177-193.

LM. Vane, FR. Alvarez, B. Mullins, Removal of methyl tert-butyl ether from water by pervaporation: bench-and pilot-scale evaluations, Environ. Sci. Technol., 35 (2001) 391-397.

S. Zheng, C. Shen, M. Alunbate, J. Deng, L. Wang, Z. Han, H. Tang, Discovery of VOC-compliant TEOS sol and its application to SiO2/novolac hybrid coatings, Prog. Org. Coat., 76 (2013) 425-431.

D. Delimaris, T. Ioannides, VOC oxidation over MnOx–CeO2 catalysts prepared by a combustion method, Appl. Catal. B., 84 (2008) 303-312.

E. Gallego, JF. Perales, FJ. Roca, X. Guardino, Surface emission determination of volatile organic compounds (VOC) from a closed industrial waste landfill using a self-designed static flux chamber, Sci. Total Environ., 470 (2014) 587-599.

HO. Karlsson, G. Trägårdh, Aroma compound recovery with pervaporation-feed flow effects, J. Membrane Sci., 81 (1993) 163-171.

T. Masuda, M. Takatsuka, BZ. Tang, T. Higashimura, Pervaporation of organic liquid-water mixtures through substituted polyacetylene membranes, J. Membrane Sci., 49 (1990) 69-83.

HC. Park, NE. Ramaker, MH. Mulder, CA. Smolders, Separation of MTBE-methanol mixtures by pervaporation, Sep. Sci. Technol., 30 (1995) 419-433.

Z. Qi, EL. Cussler, Microporous hollow fibers for gas absorption: I. Mass transfer in the liquid, J. Membrane Sci., 23 (1985) 321-332.

M. Bhowmick, MJ. Semmens, Batch studies on a closed loop air stripping process, Water Res., 28 (1994) 2011-2019.

MJ. Semmens, R. Qin, A. Zander. Using a microporous hollow‐fiber membrane to separate VOCs from water, J. AM. Water Works ASS., 81 (1989) 162-167.

AK. Zander, MJ. Semmens, RM. Narbaitz, Removing VOCs by membrane stripping. J. AM. Water Works ASS., 81 (1989) 76-81.

K. Castro, AK. Zander, Membrane air‐stripping: effects of pretreatment, J. AM. Water Works ASS., 87 (1995) 50-61.

A. Das, I. Abou-Nemeh, S. Chandra, KK. Sirkar, Membrane-moderated stripping process for removing VOCs from water in a composite hollow fiber module, J. Membrane Sci., 148 (1998) 257-271.

H. Mahmud, A. Kumar, Rm. Narbaitz, T. Matsuura, Membrane air stripping: a process for removal of organics from aqueous solutions. 1998.

H. Mahmud, A. Kumar, RM. Narbaitz, T. Matsuura, A study of mass transfer in the membrane air-stripping process using microporous polyproplylene hollow fibers, J. Membrane Sci., 179 (2000) 29-41.

H. Mahmud, A. Kumar, RM. Narbaitz, T. Matsuura, Mass transport in the membrane air-stripping process using microporous polypropylene hollow fibers: effect of toluene in aqueous feed, J. Membrane Sci., 209 (2002) 207-219.

A. Malek, K. Li, WK. Teo, Modeling of microporous hollow fiber membrane modules operated under partially wetted conditions, Ind. Eng. Chem. Res., 36 (1997) 784-793.

A. Gabelman, ST. Hwang, Hollow fiber membrane contactors, J. Membrane Sci., 159 (1999) 61-106.

M. Jabłońska, A. Król, E. Kukulska-Zając, K. Tarach, V. Girman, L. Chmielarz, K. Góra-Marek, Zeolites Y modified with palladium as effective catalysts for low-temperature methanol incineration, Appl. Catal. B., 166 (2015) 353-365.

SC. Kim, WG. Shim, Properties and performance of Pd based catalysts for catalytic oxidation of volatile organic compounds, Appl. Catal. B., 92 (2009) 429-436.

ME. Jenkin, SM. Saunders, RG. Derwent, MJ. Pilling, Development of a reduced speciated VOC degradation mechanism for use in ozone models, Atmos. Environ., 36 (2002) 4725-4734.

JY. Jeon, HY. Kim, SL. Woo, Mechanistic study on the SCR of NO by C3H6 over Pt/V/MCM-41. Appl. Catal. B., 44 (2003) 301-310.

DP. Debecker, B. Farin, EM. Gaigneaux, C. Sanchez, C. Sassoye, Total oxidation of propane with a nano-RuO2/TiO2 catalyst, Appl. Catal. A-gen., 481 (2014) 11-18.

MP. Pina, S. Irusta, M. Menéndez, J. Santamaria, R. Hughes, N. Boag, Combustion of volatile organic compounds over platinum-based catalytic membranes, Ind. Eng. Chem. Res., 36 (1997) 4557-4566.

HJ. Joung, JH. Kim, JS. Oh, DW You, HO. Park, KW. Jung, Catalytic oxidation of VOCs over CNT-supported platinum nanoparticles, Appl. Surf. Sci., 290 (2014) 267-273.

Z. Abdelouahab-Reddam, R. El Mail, F. Coloma, A. Sepúlveda-Escribano, Platinum supported on highly-dispersed ceria on activated carbon for the total oxidation of VOCs, Appl. Catal. A-Gen., 494 (2015) 87-94.

M. Konsolakis, SA. Carabineiro, PB. Tavares, JL. Figueiredo, Redox properties and VOC oxidation activity of Cu catalysts supported on Ce1−xSmxOδ mixed oxides, J. Hazard. Mater., 261 (2013) 512-521.

M. Piumetti, D. Fino, N. Russo, Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCs, Appl. Catal. B., 163 (2015) 277-287.

S. Scirè, RM. Riccobene, C. Crisafulli, Ceria supported group IB metal catalysts for the combustion of volatile organic compounds and the preferential oxidation of CO, Appl. Catal. B., 101 (2010) 109-117.

SH. Teimoori, AH. Hassani, M. Panaahie, Extraction and determination of benzene from waters and wastewater samples based on functionalized carbon nanotubes by static head space gas chromatography mass spectrometry Anal. Method Environ. Chem. J., 3 (2020) 17-26

V. Kumar, YS. Lee, JW Shin, KH. Kim, D. Kukkar, YF. Tsang, Potential applications of graphene-based nanomaterials as adsorbent for removal of volatile organic compounds Vanish Kumara,1, Yoon-Seo Lee, Environ. Int., 135 (2020) 105356.

DR. Dreyer, S. Park, CW. Bielawski, RS. Ruoff. The chemistry of GO, Chem. Soc. Rev., 39 (2010) 228-40.

G. Ruess, Über das Graphitoxyhydroxyd (Graphitoxyd). Monatshe. Chem. Verwandte Teile Wissenschaft., 76 (1974) 381–417.

W. Scholz, HP. Boehm, Untersuchungen am graphitoxid. VI. Betrachtungen zur struktur des graphitoxids, Z Anorg Allg Chem., 369 (1969) 327–340.

T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis, I. Dékány, Evolution of surface functional groups in a series of progressively oxidized graphite oxides, Chem. Mater., 18 (2006) 2740-2749.

F. Chu, Y. Zheng, B. Wen, L. Zhou, J. Yan, Y. Chen, Adsorption of toluene with water on zeolitic imidazolate framework-8/graphene oxide hybrid nanocomposites in a humi atmosphere, RSC Adv., 8 (2018) 2426-2432.

L. Yu, L. Wang, W. Xu, L. Chen, M. Fu, J. Wu, D. Ye. Adsorption of VOCs on reduced graphene oxide, J. Environ. Sci., 67 (2018) 171-8.

B. Szczęśniak, J. Choma, m. Jaroniec, Effect of graphene oxide on the adsorption properties of ordered mesoporous carbons toward H2, C6H6, CH4 and CO2, Micropor. Mesopor. Mater., 261 (2018) 105-110.

B. Szczęśniak, L. Osuchowski, J. Choma, M. Jaroniec. Highly porous carbons obtained by activation of polypyrrole/reduced graphene oxide as effective adsorbents for CO 2, H 2 and C6H6, J. Porous Mater., 25 (2018) 621-627.

GQ. Liu, MX. Wan, ZH. Huang, FY. Kang, Preparation of graphene/metal-organic composites and their adsorption performance for benzene and ethanol, New Carbon Mater., 30 (2015) 566-571.

JM. Kim, JH. Kim, CY. Lee, DW. Jerng, HS. Ahn, Toluene and acetaldehyde removal from air on to graphene-based adsorbents with microsized pores, J. Hazard. Mater., 344 (2018) 458-65.

L. Wu, l. Zhang, T. Meng, F. Yu, J. Chen, J. Ma, Facile synthesis of 3D amino-functional graphene-sponge composites decorated by graphene nanodots with enhanced removal of indoor formaldehyde, Aerosol Air Qual Res., 15 (2015) 1028-34.

V. Kumar, YS. Lee, JW. Shin, KH. Kim,D. Kukkar, YF. Tsang, Potential applications of graphene-based nanomaterials as adsorbent for removal of volatile organic compounds, Environ. Int., 135 (2020) 105356.

ST. Lim, JH. Kim, CY. Lee, S. Koo, DW. Jerng, S. Wongwises, HS. Ahn, Mesoporous graphene adsorbents for the removal of toluene and xylene at various concentrations and its reusability, Sci. Rep., 9 (2019) 1-12.

TK. Tseng, YS. Lin, YJ. Chen, H. Chu, A review of photocatalysts prepared by sol-gel method for VOCs removal, Int. J. Mol. Sci., 11 (2010) 2336-2361.

U. Schubert, Catalysts made of organic-inorganic hybrid materials, New J. Chem., 18 (1994) 1049-1058.

J. Blum, A. Rosenfeld, F. Gelman, H. Schumann, D. Avnir, Hydrogenation and dehalogenation of aryl chlorides and fluorides by the sol–gel entrapped RhCl3–Aliquat 336 ion pair catalyst, J. Mol. Catal. A Chem., 146 (1999) 117-122.

P. Banet, C. Cantau, C. Rivron, TH. Tran-Thi, Nano-porous sponges and proven chemical reactions for the trapping and sensing of halogenated gaseous compounds, Actual. Chim., (2009) 30-35.

J. Lin, CW. Brown, Sol-gel glass as a matrix for chemical and biochemical sensing. Trac-Trend Anal. Chem., 16 (1997) 200-211.

R. Gvishi, U. Narang, G. Ruland, DN. Kumar, PN. Prasad, Novel, Organically Doped, Sol–Gel‐Derived Materials for Photonics: Multiphasic Nanostructured Composite Monoliths and Optical Fibers, Appl. Organomet. Chem., 11 (1997) 107-127.

B. Dunn, GC. Farrington, B. Katz, Sol-gel approaches for solid electrolytes and electrode materials, Solid State Ion., 70 (1994) 3-10.

D. Levy, L. Esquivias, Sol–gel processing of optical and electrooptical materials, Adv. Mater., 7 (1995) 120-129.

B. Dunn, JI. Zink, Optical properties of sol–gel glasses doped with organic molecules. J. Mater. Chem., 1 (1991) 903-913.

D. Levy, Recent applications of photochromic sol-gel materials. molecular crystals and liquid crystals science and technology, section A, Mol. Cryst. Liq. Cryst., 297 (1997) 31-39.

G. Xomeritakis, CY. Tsai, YB. Jiang, CJ. Brinker, Tubular ceramic-supported sol–gel silica-based membranes for flue gas carbon dioxide capture and sequestration, J. Membr. Sci., 341 (2009) 30-36.

Z. Zeng, W. Qiu, M. Yang, X. Wei, Z. Huang, F. Li, Solid-phase microextraction of monocyclic aromatic amines using novel fibers coated with crown ether, J. Chromatogr. A., 934 (2001) 51-57.

MR. Hoffmann, ST. Martin, W. Choi, DW. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69-96.

L. Cao, Z. Gao, SL. Suib, TN. Obee, SO. Hay, JD. Freihaut, Photocatalytic oxidation of toluene on nanoscale TiO2 catalysts: studies of deactivation and regeneration, J. Catal., 196 (2000) 253-261.

S. Yamazaki, H. Abe, T. Tanimura, Y. Yamasaki, K. Kanaori, K. Tajima, Effect of thermal treatment on the photocatalytic degradation of ethylene, trichloroethylene, and chloroform, Res. Chem. Intermed., 35 (2009) 91-101.

WH. Ching, M. Leung, DY. Leung, Solar photocatalytic degradation of gaseous formaldehyde by sol–gel TiO2 thin film for enhancement of indoor air quality, Sol. Energy., 77 (2004) 129-135.

BY. Lee, SW. Kim, SC. Lee, HH. Lee, SJ. Choung, Photocatalytic decomposition of gaseous formaldehyde using TiO2, SiO2− TiO2 and Pt− TiO2, Int. J. Photoenergy, 5 (2002) 463920.

N. Parvizi, N. Rahemi, S. Allahyari, M. Tasbihi, Plasma-catalytic degradation of BTX over ternary perovskite-type La1-x (Co, Zn, Mg, Ba) xMnO3 nanocatalysts, J. Ind. Eng. Chem., 84 (2020) 167-178.

DP. Debecker, R. Delaigle, K. Bouchmella, P. Eloy, EM. Gaigneaux, PH. Mutin, Total oxidation of benzene and chlorobenzene with MoO3-and WO3-promoted V2O5/TiO2 catalysts prepared by a nonhydrolytic sol–gel route, Catal. Today, 157 (2010) 125-130.

A. Sarafraz-Yazdi, A. Amiri, G. Rounaghi, HE. Hosseini, A novel solid-phase microextraction using coated fiber based sol–gel technique using poly (ethylene glycol) grafted multi-walled carbon nanotubes for determination of benzene, toluene, ethylbenzene and o-xylene in water samples with gas chromatography-flam ionization detector, J. Chromatogr. A, 1218 (2011) 5757-5764.

T. Uragami, H. Yamada, T. Miyata, Removal of dilute volatile organic compounds in water through graft copolymer membranes consisting of poly (alkylmethacrylate) and poly (dimethylsiloxane) by pervaporation and their membrane morphology, J. Membr. Sci., 187 (2001) 255-269.

T. Uragami, T. Ohshima, T. Miyata, Removal of benzene from an aqueous solution of dilute benzene by various cross-linked poly (dimethylsiloxane) membranes during pervaporation, Macromolecules, 36 (2003) 9430-9436.

T. Ohshima, T. Miyata, T. Uragami, H. Berghmens, Cross-linked smart poly (dimethylsiloxane) membranes for removal of volatile organic compounds in water, J. Mol. Struc., 739 (2005) 47-55.

T. Ohshima, Y. Kogami, T. Miyata, T. Uragami, Pervaporation characteristics of cross-linked poly (dimethylsiloxane) membranes for removal of various volatile organic compounds from water, J. Membrane Sci., 260 (2005) 156-163.

H. Zhen, SM. Jang, WK. Teo, K. Li, Modified silicone–PVDF composite hollow‐fiber membrane preparation and its application in VOC separation, J. Appl. Polym. Sci., 99 (2006) 2497-2503.

H. Wu, L. Liu, F. Pan, C. Hu, Z. Jiang, Pervaporative removal of benzene from aqueous solution through supramolecule calixarene filled PDMS composite membranes, Sep. Purif. Technol., 51 (2006) 352-358.

S. Chovau, A. Dobrak, A. Figoli, F. Galiano, S. Simone, E. Drioli, SK. Sikdar, B. Van der Bruggen, Pervaporation performance of unfilled and filled PDMS membranes and novel SBS membranes for the removal of toluene from diluted aqueous solutions, Chem. Eng. J., 159 (2010) 37-46.

J. Xu, A. Ito, Removal of VOC from water by pervaporation with hollow-fiber silicone rubber membrane module, Desalination Water Treat., 17 (2010) 135-42.

T. Uragami, I. Sumida, T. Miyata, T. Shiraiwa, H. Tamura, T. Yajima, Pervaporation characteristics in removal of benzene from water through polystyrene-poly (dimethylsiloxane) IPN membranes, Mater. Sci. Appl., 2 (2011)169.

T. Uragami, Y. Matsuoka, T. Miyata. Removal of dilute benzene in water through ionic liquid/poly (vinyl chloride) membranes by pervaporation, J. Membrane Sci. Res., 2 (2016) 20-5.

J. Kujawa, S. Al-Gharabli, W. Kujawski, K. Knozowska. Molecular grafting of fluorinated and nonfluorinated alkylsiloxanes on various ceramic membrane surfaces for the removal of volatile organic compounds applying vacuum membrane distillation, ACS Appl. Mater. Inter., 9 (2017) 6571-90.

Z. Zhang, Z. Jiang, W. Shangguan. Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review, Catal. Today, 264 (2016) 270-8.

X. Liu, J. Zeng, W. Shi, J. Wang, T. Zhu, Y. Chen. Catalytic oxidation of benzene over ruthenium–cobalt bimetallic catalysts and study of its mechanism, Catal, Sci, Technol., 7 (2017) 213-21.

M. Zhang, W. Li, X. Wu, F. Zhao, D. Wang, X, Zha, S. Li, H. Liu, Y. Chen. Low-temperature catalytic oxidation of benzene over nanocrystalline Cu–Mn composite oxides by facile sol–gel synthesis, New J. Chem., 44 (2020) 2442-51.

P. Marín, FV. Díez, S. Ordóñez. A new method for controlling the ignition state of a regenerative combustor using a heat storage device, Appl. Energy, 116 (2014) 322-32.

S. Hoseini, N. Rahemi, S. Allahyari, M. Tasbihi. Application of plasma technology in the removal of volatile organic compounds (BTX) using manganese oxide nano-catalysts synthesized from spent batteries, J. Clean. Prod., 232 (2019) 1134-47.

V. Georgiev. Ozone Assisted Low Temperature Catalytic Benzene Oxidation over Al2O3, SiO2, AlOOH Supported Ni/Pd Catalytic, Int. J. Chem. Mater. Eng., 14 (2020) 168-73.

J. Zhang, Y. Hu, J. Qin, Z. Yang, M. Fu. TiO2-UiO-66-NH2 nanocomposites as efficient photocatalysts for the oxidation of VOCs, Chem. Eng. J., 385 (2020) 123814.

J. Ji, Y. Xu, H. Huang, M. He, S. Liu, G. Liu, R. Xie, Q. Feng, Y. Shu, Y. Zhan, R. Fang. Mesoporous TiO2 under VUV irradiation: Enhanced photocatalytic oxidation for VOCs degradation at room temperature, Chem. Eng. J., 327 (2017) 490-9.

H. Huang, G. Liu, Y. Zhan, Y. Xu, Lu H, H. Huang, Q. Feng, M. Wu. Photocatalytic oxidation of gaseous benzene under VUV irradiation over TiO2/zeolites catalysts, Catal. Today, 281 (2017) 649-55.

P. Fu, P. Zhang, J. Li. Photocatalytic degradation of low concentration formaldehyde and simultaneous elimination of ozone by-product using palladium modified TiO2 films under UV irradiation. Appl. Catal. B: Environ., 105 (2011) 220-8.

E. Rezaei, J. Soltan, N. Chen. Catalytic oxidation of toluene by ozone over alumina supported manganese oxides. Effect of catalyst loading, Appl. Catal. B: Environ., 136 (2013) 239-47.

Y. Shu, M. He, J. Ji, H. Huang, S. Liu, DY. Leung. Synergetic degradation of VOCs by vacuum ultraviolet photolysis and catalytic ozonation over Mn-xCe/ZSM-5, J. Hazard. Mater., 364 (2019) 770-9.

E. Rezaei, J. Soltan. Low temperature oxidation of toluene by ozone over MnOx/γ-alumina and MnOx/MCM-41 catalysts, Chem. Eng. j., 198 (2012) 482-90.

AM. Vandenbroucke, R. Morent, N. De Geyter, C. Leys. Non-thermal plasmas for non-catalytic and catalytic VOC abatement, J. Hazard. Mater., 195 (2011) 30-54.

HH. Kim, Y. Teramoto, N. Negishi, A. Ogata. A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: A review, Catal. Today, 256 (2015) 13-22.

H. Guo, X. Liu, H. Hojo, X. Yao, H. Einaga, W. Shangguan. Removal of benzene by non-thermal plasma catalysis over manganese oxides through a facile synthesis method, Environ. Sci. Pollut. Res., 26 (2019) 8237-47.

N. Jiang, J. Hu, J. Li, K. Shang, N. Lu, Y. Wu. Plasma-catalytic degradation of benzene over Ag–Ce bimetallic oxide catalysts using hybrid surface/packed-bed discharge plasmas, Appl. Catal. B: Environ., 184 (2016) 355-63.

DK. Patel, HB. Kim, SD. Dutta, K. Ganguly, KT. Lim. Carbon nanotubes-based nanomaterials and their agricultural and biotechnological applications, Mater., 13 (2020) 1679.

F. Pourfayaz, S. Boroun, J. Babaei, B. Ebrahimi Hoseinzadeh. An evaluation of the adsorption potential of MWCNTs for benzene and toluene removal, Int. J. Nanosci. Nanotechnol., 10 (2014) 27-34.

LH. Keith, H. Lawrence, HJ. Brass, DJ. Sullivan, JA. Boiani, KT. Alben, An introduction to the national environmental methods index, Environ. Sci. Technol., 6 (2005) 173A-176A.

R. Kubinec, J. Adamuščin, H. Jurdáková, M. Foltin, I. Ostrovský, A. Kraus, L. Soják, Gas chromatographic determination of benzene, toluene, ethylbenzene and xylenes using flame ionization detector in water samples with direct aqueous injection up to 250 μl, J. Chromatogr. A, 1084 (2005) 90-4.

V. López Grimau, MC. Gutiérrez Bouzán, J. Griera, JM. Guadayol Cunill. Determination of non halogenated solvents in industrial wastewater using solid phase microextraction (SPME) and GC-MS, Latin Am. Appl. Res., 36 (2006) 49-55.

R. Yusiasih, R. Marvalosha, SD. Suci, E. Yuliani, MM. Pitoi, Low volume liquid-liquid extraction for the determination of benzene, toluene, and xylene in water by GC-FID and HPLC-UV, IOP Conf. Ser.: Earth Environ. Sci., 277 (2019) 012019.

G. Garcia de Freitas Junior, TM. Florêncio, RJ.Mendonça, GR. Salazar‐Banda, Rt. Oliveira, Simultaneous Voltammetric Determination of Benzene, Toluene and Xylenes (BTX) in Water Using a Cathodically Pre-Treated Boron-Doped Diamond Electrode, Electroanal., 31 (2019) 554-559.

X. Li, Z. Jia, J. Wang, H. Sui, L. He, OA.Volodin, Detection of Residual Solvent in Solvent-Extracted Unconventional Oil Ore Gangues. J. Eng. Thermophys., 28 (2019) 499-506.

N. Sun, SQ. Wang, R. Zou ,WG. Cui,A Zhang , T. Zhang, Q. Li, ZZ. Zhuang, YH. Zhang,J. Xu, MJ. Zaworotko, Benchmark selectivity p-xylene separation by a non-porous molecular solid through liquid or vapor extraction, Chem. sci.,10 (2019) 8850-8854.

S. Teimoori, AH.Hassani , M. Panaahie, The Extraction and determination of benzene from waters and wastewater samples based on functionalized carbon nanotubes by static head space gas chromatography mass spectrometry, Anal. Method Environ. Chem. J., 3 (2020) 17-26.

MB. Hosseinabadi, AF. Zarandi, Functionalized graphene-trimethoxyphenyl silane for toluene removal from workplace air by sorbent gas extraction method, Anal. Method. Environ. Chem. J., 2 (2019) 45-54.

L. Mohammadi, E. Bazrafshan, M. Noroozifar, A. Ansari-Moghaddam, F. Barahuie, D. Balarak , Adsorptive removal of Benzene and Toluene from aqueous environments by cupric oxide nanoparticles: kinetics and isotherm studies, J. Chem., 2017 (2017) 2069519.

SG. Attari, A. Bahrami, FG. Shahna, M. Heidari, Solid-phase microextraction fiber development for sampling and analysis of volatile organohalogen compounds in air, J. Environ. Health Sci. Eng., 12 (2014) 123-130.

C. Nerın, MR. Philo, J. Salafranca, L.Castle, Determination of bisphenol-type contaminants from food packaging materials in aqueous foods by solid-phase microextraction–high-performance liquid chromatography, J. Chromatogr., 963 (2002) 375-380.

FJ. Conde, Am. Afonso, V.González, JH. Ayala, Optimization of an analytical methodology for the determination of alkyl-and methoxy-phenolic compounds by HS-SPME in biomass smoke, Anal. Bioanal. chem., 385 (2006) 1162-1171.

SB.Hawthorne, CB. Grabanski, DJ. Miller, JP. Kreitinger, Solid-phase microextraction measurement of parent and alkyl polycyclic aromatic hydrocarbons in milliliter sediment pore water samples and determination of K DOC values, Environ. Sci. Technol., 39 (2005) 2795-2803.

X. Lu, C.Fan, J. Shang, J. Deng, H. Yin, Headspace solid-phase microextraction for the determination of volatile sulfur compounds in odorous hyper-eutrophic freshwater lakes using gas chromatography with flame photometric detection, Microchem. J., 104 (2012) 26–32.

JX. Wang, DQ. Jiang, ZY. Gu, XP.Yan, Multiwalled carbon nanotubes coated fibers for solid-phase microextraction of polybrominated diphenyl ethers in water and milk samples before gas chromatography with electron-capture detection, J. Chromatogr. A, 1137 (2006) 8-14.

MH. Banitaba, AA. Mohammadi, SS. Davarani, A. Mehdinia, Preparation and evaluation of a novel solid-phase microextraction fiber based on poly(3,4-ethylenedioxythiophene) for the analysis of OCPs in water, Anal. Methods, 3 (2011) 2061–2067.

LA. Lagalante, AJ. Lagalante,AF. Lagalante. 3D printed solid-phase extraction sorbents for removal of volatile organic compounds from water, J. Water Process Eng., 35 (2020)101194.

Published
2020-06-30
How to Cite
Teimoori, S., Hassani, A. H., Panahi, M., & Mansouri, N. (2020). A review: Methods for removal and adsorption of volatile organic compounds from environmental matrixes. Analytical Methods in Environmental Chemistry Journal, 3(02), 34-58. https://doi.org/10.24200/amecj.v3.i02.100
Section
Review Article